The constant mutation of SARS-CoV-2 has led to the emergence of new variants, which call for urgent effective therapeutic interventions. The trimeric spike (S) protein of SARS-CoV-2 is highly immunogenic with the receptor-binding domain (RBD) that binds first to the cellular receptor angiotensin-converting enzyme 2 (ACE2) and is therefore the target of many neutralizing antibodies. In this study, we characterized a broadly neutralizing monoclonal antibody (mAb) 9G8, which shows potent neutralization against the authentic SARS-CoV-2 wild-type (WT), Alpha (B.1.1.7), and Delta (1.617.2) viruses. Furthermore, mAb 9G8 also displayed a prominent neutralizing efficacy in the SARS-CoV-2 surrogate virus neutralization test (sVNT) against the Epsilon (B.1.429/7), Kappa (B.1.617.1), Gamma (P.1), Beta (B.1.351), and Delta Plus (1.617.2.1) RBD variants in addition to the variants mentioned above. Based on our in vitro escape mutant studies, we proved that the mutations V483F and Y489H within the RBD were involved in ACE2 binding and caused the neutralizing evasion of the virus from mAb 9G8. The development of such a cross-reactive neutralizing antibody against majority of the SARS-CoV-2 variants provides an important insight into pursuing future therapeutic agents for the prevention and treatment of COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878391PMC
http://dx.doi.org/10.3390/v14020230DOI Listing

Publication Analysis

Top Keywords

mab 9g8
12
broadly neutralizing
8
neutralizing monoclonal
8
monoclonal antibody
8
sars-cov-2 variants
8
neutralizing
6
sars-cov-2
6
variants
5
characterization broadly
4
antibody sars-cov-2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!