The limitations on the use of fluoride therapy in dental caries prevention has necessitated the development of newer preventive agents. This review focusses on the recent and significant studies on P11-4 peptide with an emphasis on different applications in dental hard tissue conditions. The self-assembling peptide P11-4 diffuses into the subsurface lesion assembles into aggregates throughout the lesion, supporting the nucleation of de novo hydroxyapatite nanocrystals, resulting in increased mineral density. P11-4 treated teeth shows more remarkable changes in the lesion area between the first and second weeks. The biomimetic remineralisation facilitated in conjunction with fluoride application is an effective and non-invasive treatment for early carious lesions. Despite, some studies have reported that the P11-4 group had the least amount of remineralised enamel microhardness and a significantly lower mean calcium/phosphate weight percentage ratio than the others. In addition, when compared to a low-viscosity resin, self-assembling peptides could neither inhibit nor mask the lesions significantly. Moreover, when it is combined with other agents, better results can be achieved, allowing more effective biomimetic remineralisation. Other applications discussed include treatment of dental erosion, tooth whitening and dentinal caries. However, the evidence on its true clinical potential in varied dental diseases still remains under-explored, which calls for future cohort studies on its in vivo efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879648PMC
http://dx.doi.org/10.3390/polym14040792DOI Listing

Publication Analysis

Top Keywords

self-assembling peptide
8
peptide p11-4
8
dental hard
8
hard tissue
8
tissue conditions
8
biomimetic remineralisation
8
p11-4
5
dental
5
effectiveness self-assembling
4
p11-4 dental
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!