Rubber damping materials are widely used in electronics, electrical and other fields because of their unique viscoelasticity. How to prepare high-damping materials and prevent small molecule migration has attracted much attention. Antioxidant 4010NA was successfully grafted onto graphene oxide (GO) to prepare an anti-migration antioxidant (GO-4010NA). A combined molecular dynamics (MD) simulation and experimental study is presented to investigate the effects of small molecules 4010NA, GO, and GO-4010NA on the compatibility and damping properties of nitrile-butadiene rubber (NBR) composites. Differential scanning calorimetry (DSC) results showed that both 4010NA and GO-4010NA had good compatibility with the NBR matrix, and the of GO-4010NA/NBR composite was improved. Dynamic mechanical analysis (DMA) data showed that the addition of GO-4010NA increased the damping performance of NBR than that of the addition of 4010NA. Molecular dynamics (MD) simulation results show GO-4010NA/NBR composites have the smallest free volume fraction (FFV) and the largest binding energy. GO-4010NA has a strong interaction with NBR due to the forming of hydrogen bonds (H-bonds). Grafting 4010NA onto GO not only inhibits the migration of 4010NA but also improves the damping property of NBR matrixes. This study provides new insights into GO grafted small molecules and the design of high-damping composites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878373PMC
http://dx.doi.org/10.3390/polym14040736DOI Listing

Publication Analysis

Top Keywords

compatibility damping
8
damping performance
8
graphene oxide
8
molecular dynamics
8
dynamics simulation
8
small molecules
8
4010na go-4010na
8
4010na
6
damping
5
go-4010na
5

Similar Publications

Observation of Real-Time Spin-Orbit Torque Driven Dynamics in Antiferromagnetic Thin Film.

Adv Mater

January 2025

Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA.

In the burgeoning field of spintronics, antiferromagnetic materials (AFMs) are attracting significant attention for their potential to enable ultra-fast, energy-efficient devices. Thin films of AFMs are particularly promising for practical applications due to their compatibility with spin-orbit torque (SOT) mechanisms. However, studying these thin films presents challenges, primarily due to the weak signals they produce and the rapid dynamics driven by SOT, that are too fast for conventional electric transport or microwave techniques to capture.

View Article and Find Full Text PDF

The dynamics of neuronal systems are characterized by hallmark features such as oscillations and synchrony. However, it has remained unclear whether these characteristics are epiphenomena or are exploited for computation. Due to the challenge of selectively interfering with oscillatory network dynamics in neuronal systems, we simulated recurrent networks of damped harmonic oscillators in which oscillatory activity is enforced in each node, a choice well supported by experimental findings.

View Article and Find Full Text PDF

All-solid-state lithium metal batteries are regarded as next-generation devices for energy storage due to their safety and high energy density. The issues of lithium dendrites and poor mechanical compatibility with electrodes present the need for developing solid-state electrolytes with high stiffness and damping, but it is a contradictory relationship. Here, inspired by the superstructure of tooth enamel, we develop a composite solid-state electrolyte composed of amorphous ceramic nanotube arrays intertwined with solid polymer electrolytes.

View Article and Find Full Text PDF

Atomically resolved scanning tunneling microscope (STM) capable of in situ rotation in a narrow magnet bore has become a long-awaited but challenging technique in the field of strong correlation studies since it can introduce the orientation of the strong magnetic field as a control parameter. This article presents the design and functionality of a piezoelectrically driven rotatable STM (RSTM), operating within a 12 T cryogen-free magnet and achieving a base temperature below 1.8 K, along with spectroscopic capabilities.

View Article and Find Full Text PDF

Efficient Generation of Out-of-Plane Polarized Spin Current in Polycrystalline Heavy Metal Devices with Broken Electric Symmetries.

Adv Mater

October 2024

State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.

Article Synopsis
  • The study explores the generation of perpendicularly polarized spin currents (z spins) in heavy metal devices, which can enable energy-efficient switching without needing a magnetic field, overcoming challenges with existing single crystal methods.
  • Researchers discovered that by manipulating electric asymmetries in the device's dimensions and material types, both damping-like and field-like spin-orbit torques of z spins can be significantly adjusted.
  • This breakthrough allows for effective switching of perpendicularly magnetized magnetic layers, crucial for developing low-power spin-torque memory technologies, and encourages further research into z spins in various materials.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!