The reaction of β-diketophosphazene with the europium (III) salt synthesized the corresponding metal complex which was structured with (3-aminopropyl)triethoxysilane and treated with dibenzoylmethane for additional coordination of europium atoms. The polymer thus obtained exhibits luminescence with a maximum of 615 nm, which is characteristic of europium. The polymer is thermally stable up to 300 °C, the coating based on it has a contact angle of 101°, and the adhesive strength of the coating to non-finished glass (according to ISO 2409: 2013) is 1 point.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878491PMC
http://dx.doi.org/10.3390/polym14040728DOI Listing

Publication Analysis

Top Keywords

luminescent coatings
4
coatings based
4
based 3-aminopropyltriethoxysilane
4
europium
4
3-aminopropyltriethoxysilane europium
4
europium complex
4
complex β-diketophosphazene
4
β-diketophosphazene reaction
4
reaction β-diketophosphazene
4
β-diketophosphazene europium
4

Similar Publications

Holistic monitoring of Campylobacter jejuni biofilms with NanoLuc bioluminescence.

Appl Microbiol Biotechnol

December 2024

Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia.

Campylobacter jejuni, a major cause of foodborne zoonotic infections worldwide, shows a paradoxical ability to survive despite its susceptibility to environmental and food-processing stressors. This resilience is likely due to the bacterium entering a viable but non-culturable state, often within biofilms, or even initiating biofilm formation as a survival strategy. This study presents an innovative application of NanoLuc bioluminescence to accurately monitor the development of C.

View Article and Find Full Text PDF

Recent advancements in materials design have driven the scientific community to explore phosphor materials for multifunctional applications. This study presents the multimodal light emission (downshifting - DS, quantum cutting - QC, and upconversion - UC) from Pr/Yb activated NaLa(MoO) phosphors for multifunctional applications. Under blue (449 nm) and NIR (980 nm) excitation, co-doped phosphors emit visible light through DS and UC processes caused by different f-f transitions of Pr ions.

View Article and Find Full Text PDF

The application of upconversion nanomaterials relies heavily on the ability to produce bright upconversion luminescence (UCL) or high upconversion quantum yields (UCQYs) at low power density excitation. Herein, we synthesized silica-coated NaYF:Yb@NaGdF:Tm@NaYF:Tb upconversion nanoparticles (UCNPs) and CsPbI perovskites quantum dots (PeQDs) nanocomposites by the slow hydrolysis of (3-aminopropyl)triethoxysilane. The energy transfer (ET) of Gd→Tb accelerates the five-photon upconversion process of Yb-Tm and the design of the core@shell@shell layer effectively mitigates the energy jumps between Gd ions.

View Article and Find Full Text PDF

Stretchable Multimodal Photonic Sensor for Wearable Multiparameter Health Monitoring.

Adv Mater

December 2024

School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China.

Stretchable sensors that can conformally interface with the skins for wearable and real-time monitoring of skin deformations, temperature, and sweat biomarkers offer critical insights for early disease prediction and diagnosis. Integration of multiple modalities in a single stretchable sensor to simultaneously detect these stimuli would provide a more comprehensive understanding of human physiology, which, however, has yet to be achieved. Here, this work reports, for the first time, a stretchable multimodal photonic sensor capable of simultaneously detecting and discriminating strain deformations, temperature, and sweat pH.

View Article and Find Full Text PDF

Large-scale preparation of Sb-activated hybrid metal halides with efficient tunable emission from visible to near-infrared regions for advanced photonic applications.

Mater Horiz

December 2024

State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

Zero-dimensional metal halides with diverse structures and rich photophysical properties have been reported. However, achieving multimode dynamic luminescence and efficient near-infrared (NIR) emission under blue light excitation in a single system is a great challenge. Herein, Sb-doped hybrid Cd(II) halides were synthesized by a large scale synthesis process at room temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!