Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microencapsulation plays an important role in biomedical technology owing to its particular and attractive characteristics. In this work, we developed ropivacaine and dexamethasone loaded poly(D, L-lactide-co-glycolide) (PLGA) microparticles via electrospraying technique and investigated the release behavior of electrosprayed microparticles. The particle morphology of sprayed particles was assessed using scanning electron microscopy (SEM). The in vitro drug release kinetics were evaluated employing an elution method, and the in vivo pharmaceutical release as well as its efficacy on pain relief were tested using an animal activity model. The microscopic observation suggested that sprayed microparticles exhibit a size distribution of 5-6 µm. Fourier-transform infrared spectrometry and differential scanning calorimetry demonstrated the successful incorporation of pharmaceuticals in the PLGA particulates. The drugs-loaded particles discharged sustainably high concentrations of ropivacaine and dexamethasone at the target region in vivo for over two weeks, and the drug levels in the blood remained low. By adopting the electrospraying technique, we were able to prepare drug-embedded polymeric microparticles with effectiveness and with a sustainable capability for postoperative pain control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878160 | PMC |
http://dx.doi.org/10.3390/polym14040702 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!