Background: Omega-3 polyunsaturated fatty acids (PUFAs) have been proposed to improve chronic neuroinflammatory diseases in peripheral and central nervous systems. For instance, docosahexaenoic acid (DHA) protects nerve cells from noxious stimuli in vitro and in vivo. Recent reports link PUFA supplementation to improving painful diabetic neuropathy (pDN) symptoms, but cellular mechanisms responsible for this therapeutic effect are not well understood. The objective of this study is to identify distinct cellular pathways elicited by dietary omega-3 PUFA supplementation in patients with type 2 diabetes mellitus (T2DM) affected by pDN.

Methods: Forty volunteers diagnosed with type 2 diabetes were enrolled in the "En Balance-PLUS" diabetes education study. The volunteers participated in weekly lifestyle/nutrition education and daily supplementation with 1000 mg DHA and 200 mg eicosapentaenoic acid. The Short-Form McGill Pain Questionnaire validated clinical determination of baseline and post-intervention pain complaints. Laboratory and untargeted metabolomics analyses were conducted using blood plasma collected at baseline and after three months of participation in the dietary regimen. The metabolomics data were analyzed using random forest, hierarchical clustering, ingenuity pathway analysis, and metabolic pathway mapping.

Results: The data show that metabolites involved in oxidative stress and glutathione production shifted significantly to a more anti-inflammatory state post supplementation. Example of these metabolites include cystathionine (+90%), S-methylmethionine (+9%), glycine cysteine-glutathione disulfide (+157%) cysteinylglycine (+19%), glutamate (-11%), glycine (+11%), and arginine (+13.4%). In addition, the levels of phospholipids associated with improved membrane fluidity such as linoleoyl-docosahexaenoyl-glycerol (18:2/22:6) (+253%) were significantly increased. Ingenuity pathway analysis suggested several key bio functions associated with omega-3 PUFA supplementation such as formation of reactive oxygen species ( = 4.38 × 10, z-score = -1.96), peroxidation of lipids ( = 2.24 × 10, z-score = -1.944), Ca transport ( = 1.55 × 10, z-score = -1.969), excitation of neurons ( = 1.07 ×10, z-score = -1.091), and concentration of glutathione ( = 3.06 × 10, z-score = 1.974).

Conclusion: The reduction of pro-inflammatory and oxidative stress pathways following dietary omega-3 PUFA supplementation is consistent with the promising role of these fatty acids in reducing adverse symptoms associated with neuroinflammatory diseases and painful neuropathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876723PMC
http://dx.doi.org/10.3390/nu14040761DOI Listing

Publication Analysis

Top Keywords

pufa supplementation
16
dietary omega-3
12
type diabetes
12
omega-3 pufa
12
omega-3 polyunsaturated
8
cellular pathways
8
patients type
8
painful diabetic
8
diabetic neuropathy
8
fatty acids
8

Similar Publications

Position Statement: The International Society of Sports Nutrition (ISSN) presents this position based on a critical examination of the literature surrounding the effects of long-chain omega-3 polyunsaturated fatty acid (ω-3 PUFA) supplementation on exercise performance, recovery, and brain health. This position stand is intended to provide a scientific foundation for athletes, dietitians, trainers, and other practitioners regarding the effects of supplemental ω-3 PUFA in healthy and athletic populations. The following conclusions represent the official position of the ISSN: Athletes may be at a higher risk for ω-3 PUFA insufficiency.

View Article and Find Full Text PDF

The Optimal Dosage and Duration of Omega-3 Polyunsaturated Fatty Acid Supplementation in Heart Failure Management: Evidence from a Network Meta-Analysis.

Adv Nutr

January 2025

Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan. Electronic address:

Heart failure is a progressive condition associated with a high mortality rate. Despite advancements in treatment, many patients continue to experience less-than-ideal outcomes. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been studied as a potential supplementary therapy for heart failure, but the optimal dosage and duration of supplementation remain unclear.

View Article and Find Full Text PDF

Diabetic cognitive dysfunction (DCD) refers to the cognitive impairment observed in individuals with diabetes. Epidemiological studies have suggested that supplementation with n-3 polyunsaturated fatty acid (PUFA) or B vitamins may prevent the development of diabetic complications. Post hoc studies indicate a potential synergistic effect of n-3 PUFA and B vitamins in preventing cognitive impairment.

View Article and Find Full Text PDF

Introduction: The relationship between diet of mothers, including supplementation of vitamin D and Long Chain Polyunsaturated Fatty Acids (LC-PUFA), and the prevalence of congenital heart defects (CHD) in the fetus has not been sufficiently studied. The aim of the study was to investigate the relationship between the intake of vitamin D and LC-PUFA by mother (from diet and with supplementation, including its time of implementation and applied dose), and the risk of CHD in the fetus.

Methods: This was a case-control study with the participation of a total of 79 women with prenatally diagnosed CHD in the fetus and 121 women without CHD in the fetus.

View Article and Find Full Text PDF

Osteoarthritis (OA) is characterized by articular cartilage degeneration, leading to pain and loss of joint function. Recent studies have demonstrated that omega-3 (ω3) polyunsaturated fatty acid (PUFA) supplementation can decrease injury-induced OA progression in mice fed a high-fat diet. Furthermore, PUFAs have been shown to influence the mechanical properties of chondrocyte membranes, suggesting that alterations in mechanosensitive ion channel signaling could contribute to the mechanism by which ω3 PUFAs decreased OA pathogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!