The interface between ceramic particles and a polymer matrix in a hybrid electrolyte is studied with high spatial resolution by means of Electrochemical Strain Microscopy (ESM), an Atomic Force Microscope (AFM)-based technique. The electrolyte consists of polyethylene oxide with lithium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI) and LiLaZrTaO (LLZO:Ta). The individual components are differentiated by their respective contact resonance, ESM amplitude and friction signals. The ESM signal shows increased amplitudes and higher contact resonance frequencies on the ceramic particles, while lower amplitudes and lower contact resonance frequencies are present on the bulk polymer phase. The amplitude distribution of the hybrid electrolyte shows a broader distribution in comparison to pure PEO-LiTFSI. In the direct vicinity of the particles, an interfacial area with enhanced amplitude signals is found. These results are an important contribution to elucidate the influence of the ceramic-polymer interaction on the conductivity of hybrid electrolytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879204 | PMC |
http://dx.doi.org/10.3390/nano12040654 | DOI Listing |
J Appl Biomater Funct Mater
January 2025
MOE Key Lab for Liquid-Solid Structure Evolution and Materials Processing, Shandong University, Jinan, China.
In current study, microstructural, mechanical and corrosion behaviour were investigated with incorporation of dual reinforced AZ91D surface composites. This research was carried out for enhancement of the bio-degradability in biological environment. The surface composites were successfully fabricated by friction stir processing method with a rotation speed of 800 rpm, travel speed of 80 mm/min and 2.
View Article and Find Full Text PDFACS Nano
January 2025
Nanostructures Research Laboratory, Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan.
Pt-based intermetallic alloy particles with a Pt skin layer have higher catalytic activity than solid-solution alloy particles and have attracted considerable attention for practical applications in polymer electrolyte fuel cells. However, the reason for the superior performance of intermetallic alloys is not yet fully understood. Because the catalytic reaction proceeds on the topmost surface of the particle, it is necessary to clarify the relationship between the periodic structure of the intermetallic alloy and the Pt atomic coordination on the surface.
View Article and Find Full Text PDFHeliyon
January 2025
Centre for functional and surface functionalized glass, Alexander Dubček University of Trenčín, Študentská 2, Trenčín, Slovakia.
The impact of grinding on particle size, thermal behaviour, and sintering ability of yttrium aluminate glass microspheres with eutectic composition (76.8 mol % AlO and 23.2 mol % YO) was studied.
View Article and Find Full Text PDFJ Dent
January 2025
DDS, MS, PhD, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Brazil. Electronic address:
Objective: To evaluate the influence of different cleaning methods, surface treatments, and aging on the repair bond strength to a CAD/CAM glass-ceramic.
Materials And Methods: Forty-eight lithium disilicate CAD/CAM ceramic blocks were fabricated, sintered, and embedded in acrylic resin. After contamination with human saliva, they were divided according to the factors "Cleaning method" (Control-water/air spray, Air-particle abrasion with AlO, Ivoclean cleaning paste), "Surface treatment" (5% Hydrofluoric acid-HF + Silane, Monobond Etch & Prime-MEP), and "Aging" (thermocycling, no thermocycling).
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China.
Porous piezoelectric materials have attracted much interest in the fields of sensing and energy harvesting owing to their low dielectric constant, high piezoelectric voltage coefficient, and energy harvesting figure of merit. However, the introduction of porosity can decrease the piezoelectric coefficient, which restricts the enhancement of output current and power density. Herein, to overcome these challenges, an array-structured piezoelectric composite energy harvester with aligned porosity was constructed via a dual structure design strategy to enhance the output current and power density.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!