GaN-based μLEDs with superior properties have enabled outstanding achievements in emerging micro-display, high-quality illumination, and communication applications, especially white-light visible light communication (WL-VLC). WL-VLC systems can simultaneously provide white-light solid-state lighting (SSL) while realizing high-speed wireless optical communication. However, the bandwidth of conventional white-light LEDs is limited by the long-lifetime yellow yttrium aluminum garnet (YAG) phosphor, which restricts the available communication performance. In this paper, white-light GaN-μLEDs combining blue InGaN-μLEDs with green/red perovskite quantum dots (PQDs) are proposed and experimentally demonstrated. Green PQDs (G-PQDs) and red PQDs (R-PQDs) with narrow emission spectrum and short fluorescence lifetime as color converters instead of the conventional slow-response YAG phosphor are mixed with high-bandwidth blue InGaN-μLEDs to generate white light. The communication and illumination performances of the WL-VLC system based on the white-light GaN-based μLEDs are systematically investigated. The VLC properties of monochromatic light (green/red) from G-PQDs or R-PQDs are studied in order to optimize the performance of the white light. The modulation bandwidths of blue InGaN-μLEDs, G-PQDs, and R-PQDs are up to 162 MHz, 64 MHz, and 90 MHz respectively. Furthermore, the white-light bandwidth of 57.5 MHz and the Commission Internationale de L'Eclairage (CIE) of (0.3327, 0.3114) for the WL-VLC system are achieved successfully. These results demonstrate the great potential and the direction of the white-light GaN-μLEDs with PQDs as color converters to be applied for VLC and SSL simultaneously. Meanwhile, these results contribute to the implementation of full-color micro-displays based on μLEDs with high-quality PQDs as color-conversion materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879407 | PMC |
http://dx.doi.org/10.3390/nano12040627 | DOI Listing |
Bioengineering (Basel)
January 2025
Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chiayi 62102, Taiwan.
Early detection of early-stage esophageal cancer (ECA) is crucial for timely intervention and improved treatment outcomes. Hyperspectral imaging (HSI) and artificial intelligence (AI) technologies offer promising avenues for enhancing diagnostic accuracy in this context. This study utilized a dataset comprising 3984 white light images (WLIs) and 3666 narrow-band images (NBIs).
View Article and Find Full Text PDFFood Res Int
February 2025
Department of Food Science & Technology, University of California-Davis, Davis, CA 95616, USA; Department of Biological & Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA. Electronic address:
Diverse species of yeasts are commonly associated with food and food production environments. The contamination of food products by spoilage yeasts poses significant challenges, leading to quality degradation and food loss. Similarly, the introduction of undesirable strains during fermentation can cause considerable challenges with the quality and progress of the fermentation process.
View Article and Find Full Text PDFLuminescence
January 2025
Department of Display Science and Engineering, Pukyong National University, Busan, Republic of Korea.
The influence of Eu concentration on the crystal structure and photoluminescence (PL) properties of Ca(PO):xEu (0.06 ≤ x ≤ 0.10) phosphors is systematically investigated using X-ray diffraction (XRD) Rietveld refinement, scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, UV-visible spectroscopy, and PL spectroscopy.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics, Umeå University, Linnaeus väg 24, Umeå SE-90187, Sweden.
Blue light emitted by commercial white light-emitting diodes (WLEDs) in the 440-470 nm range poses ocular health risks with prolonged exposure. Effective filtration is crucial for health-conscious lighting, but traditional filters often cause color distortion by completely removing blue emission. In this study, we address this challenge by synthesizing carbon dots (CDs) with strong absorption at 460 nm and bright cyan emission at 485 nm, featuring a photoluminescence quantum yield of 65% and a narrow full width at half-maximum of 30 nm.
View Article and Find Full Text PDFEur Urol Open Sci
January 2025
Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
Background And Objective: Bladder cancer (BC) represents a significant health care challenge and is frequently detected during evaluations for haematuria in emergency departments (EDs). Our aim was to evaluate the clinical performance and economic implications of the Xpert BC Detection (BCD) test for patients presenting to the ED with haematuria to address the pressing need for more efficient and accurate diagnostic tools in this setting.
Methods: We conducted a prospective single-centre observational study in the ED of a tertiary university hospital.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!