Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper proposes a novel method for physical fatigue assessment that can be applied in wearable systems, by utilizing a set of real-time measurable cardiovascular parameters. Daylength measurements, including a morning test set, physical exercise during the day, and an afternoon test set were conducted on 16 healthy subjects (8 female and 8 male). To analyze cardiovascular parameters for physical fatigue assessment, electrocardiography, pulse wave and blood pressure were measured during the test sets. The fatigue assessment questionnaire score, reaction time, countermovement jump height and hand grip strength were also measured and used as reference parameters. This study demonstrates that (i) the compiled test battery can selectively assess the rested vs. physically-fatigued states; (ii) the obtained linear support-vector machine, trained using the heart rate variability based parameter (F-score 0.842, accuracy 0.813) and pulse arrival time based parameter (F-score 0.875, accuracy 0.875) shows a promising ability to classify between the physically mildly fatigued and significantly fatigued states. Despite the somewhat limited study group size, the results of the study are unique and provide a significant advancement on the existing physical fatigue assessment methods towards a personalized and continuous real-time fatigue monitoring system with wearable sensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924887 | PMC |
http://dx.doi.org/10.3390/s22041680 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!