Continual Learning Objective for Analyzing Complex Knowledge Representations.

Sensors (Basel)

Center for Cyber-Physical Systems (C2PS), Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates.

Published: February 2022

Human beings tend to incrementally learn from the rapidly changing environment without comprising or forgetting the already learned representations. Although deep learning also has the potential to mimic such human behaviors to some extent, it suffers from catastrophic forgetting due to which its performance on already learned tasks drastically decreases while learning about newer knowledge. Many researchers have proposed promising solutions to eliminate such catastrophic forgetting during the knowledge distillation process. However, to our best knowledge, there is no literature available to date that exploits the complex relationships between these solutions and utilizes them for the effective learning that spans over multiple datasets and even multiple domains. In this paper, we propose a continual learning objective that encompasses mutual distillation loss to understand such complex relationships and allows deep learning models to effectively retain the prior knowledge while adapting to the new classes, new datasets, and even new applications. The proposed objective was rigorously tested on nine publicly available, multi-vendor, and multimodal datasets that span over three applications, and it achieved the top-1 accuracy of 0.9863% and an F1-score of 0.9930.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879446PMC
http://dx.doi.org/10.3390/s22041667DOI Listing

Publication Analysis

Top Keywords

continual learning
8
learning objective
8
deep learning
8
catastrophic forgetting
8
complex relationships
8
knowledge
5
learning
5
objective analyzing
4
analyzing complex
4
complex knowledge
4

Similar Publications

Machine Learning-Based Estimation of Hoarseness Severity Using Acoustic Signals Recorded During High-Speed Videoendoscopy.

J Voice

January 2025

Division of Phoniatrics and Pediatric Audiology at the Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.

Objectives: This study investigates the use of sustained phonations recorded during high-speed videoendoscopy (HSV) for machine learning-based assessment of hoarseness severity (H). The performance of this approach is compared with conventional recordings obtained during voice therapy to evaluate key differences and limitations of HSV-derived acoustic recordings.

Methods: A database of 617 voice recordings with a duration of 250 ms was gathered during HSV examination (HS).

View Article and Find Full Text PDF

With the continuous development of intelligent transportation systems, traffic safety has become a major societal concern, and vehicle trajectory anomaly detection technology has emerged as a crucial method to ensure safety. However, current technologies face significant challenges in handling spatiotemporal data and multi-feature fusion, including difficulties in big data processing, and have room for improvement in these areas. To address these issues, this paper proposes a novel method that combines autoencoders, Mahalanobis distance, and dynamic Bayesian networks for anomaly detection.

View Article and Find Full Text PDF

We investigate whether gender differences in physical maturity during adolescence can explain gender differences in educational and labour market performance. Using survey data with measures of physical maturity linked to register data on education and labour market outcomes, we analyse the importance of physical maturity for gender differences in both the short and long terms. The results show that gender differences in physical maturity partially explain both the gender gap in educational performance (in girls' favour) and the gender gap in labour market outcomes at age 33 (in boys' favour).

View Article and Find Full Text PDF

Paratuberculosis (Johne's disease), caused by Mycobacterium avium subsp. paratuberculosis (MAP), is a common, economically-important and potentially zoonotic contagious disease of cattle, with worldwide distribution. Disease management relies on identification of animals which are at high-risk of being infected or infectious.

View Article and Find Full Text PDF

Mapping the knowledge landscape of the PET/MR domain: a multidimensional bibliometric analysis.

Eur J Nucl Med Mol Imaging

January 2025

Huashan Hospital and Human Phenome Institute, Fudan University, 220 Handan Road, Shanghai, 200433, China.

Objective: This study aims to conduct a bibliometric analysis to explore research trends, collaboration patterns, and emerging themes in the PET/MR field based on published literature from 2010 to 2024.

Methods: A detailed literature search was performed using the Web of Science Core Collection (WoSCC) database with keywords related to PET/MR. A total of 4,349 publications were retrieved and analyzed using various bibliometric tools, including VOSviewer and CiteSpace.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!