Two Models for Time-Domain Simulation of Hybrid Magnetic Bearing's Characteristics.

Sensors (Basel)

Department of Electrical Engineering and Mechatronics, Opole University of Technology, PL-45758 Opole, Poland.

Published: February 2022

AI Article Synopsis

  • A comparison of two simulation models for hybrid magnetic bearing (HMB) during transient states was conducted.
  • The models used were a flux-circuit with direct coupling and a field-circuit with indirect coupling through finite element analysis.
  • The simulations’ outcomes were measured against actual test results to evaluate their effectiveness.

Article Abstract

A comparison of two developed simulation models for a hybrid magnetic bearing (HMB) transient states is presented. This applies to analyses using the flux-circuit directly coupled magnetic equivalent circuit and field-circuit indirectly coupled finite element analysis. The required control system was implemented for both models. The results obtained from the simulations were compared with those obtained from measurement tests.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878507PMC
http://dx.doi.org/10.3390/s22041567DOI Listing

Publication Analysis

Top Keywords

hybrid magnetic
8
models time-domain
4
time-domain simulation
4
simulation hybrid
4
magnetic bearing's
4
bearing's characteristics
4
characteristics comparison
4
comparison developed
4
developed simulation
4
simulation models
4

Similar Publications

Wave-CAIPI Multiparameter MR Imaging in Neurology.

NMR Biomed

March 2025

Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

In clinical practice, particularly in neurology assessments, imaging multiparametric MR images with a single-sequence scan is often limited by either insufficient imaging contrast or the constraints of accelerated imaging techniques. A novel single scan 3D imaging method, incorporating Wave-CAIPI and MULTIPLEX technologies and named WAMP, has been developed for rapid and comprehensive parametric imaging in clinical diagnostic applications. Featuring a hybrid design that includes wave encoding, the CAIPIRINHA sampling pattern, dual time of repetition (TR), dual flip angle (FA), multiecho, and optional flow modulation, the WAMP method captures information on RF B1t fields, proton density (PD), T1, susceptibility, and blood flow.

View Article and Find Full Text PDF

This paper presents an in-depth analytical investigation into the time-dependent flow of a Casson hybrid nanofluid over a radially stretching sheet. The study introduces the effects of magnetic fields and thermal radiation, along with velocity and thermal slip, to model real-world systems for enhancing heat transfer in critical industrial applications. The hybrid nanofluid consists of three nanoparticles-Copper and Graphene Oxide-suspended in Kerosene Oil, selected for their stable and superior thermal properties.

View Article and Find Full Text PDF

In this study, a novel hybrid nanostructure consisting of acid-decorated chitosan and magnetic AlFeO nanoparticles was fabricated. The acid-decorated chitosan provided a stable and biocompatible matrix for the magnetic AlFeO nanoparticles. Various techniques including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction patterns (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), specific surface area (BET), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to characterize and confirm the successful synthesis of the hybrid nanostructure.

View Article and Find Full Text PDF

The hybrid magnetic heterostructures and superlattices, composed of organic and inorganic materials, have shown great potential for quantum computing and next-generation information technology. Organic materials generally possess designable structural motifs and versatile optical, electronic, and magnetic properties, but are too delicate for robust integration into solid-state devices. In contrast, inorganic systems provide robust solid-state interface and excellent electronic properties but with limited customization space.

View Article and Find Full Text PDF

Robust Indoor Pedestrian Backtracking Using Magnetic Signatures and Inertial Data.

Int Conf Indoor Position Indoor Navig

October 2024

Department of Computer Science & Engineering, University of California, Santa Cruz, Santa Cruz, USA.

Navigating unfamiliar environments can be challenging for visually impaired individuals due to difficulties in recognizing distant landmarks or visual cues. This work focuses on a particular form of wayfinding, specifically backtracking a previously taken path, which can be useful for blind pedestrians. We propose a hands-free indoor navigation solution using a smartphone without relying on pre-existing maps or external infrastructure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!