Many dielectrophoretic (DEP) devices for biomedical application have been suggested, such as the separation, concentration, and detection of biological cells or molecules. Most of these devices utilize the difference in their DEP properties. However, single-cell analysis is required to evaluate individual properties. Therefore, this paper proposed a modified isomotive insulator-based DEP (iDEP) creek-gap device for straightforward single-cell analysis, which is capable of measurement at a wide frequency band. The proposed iDEP device generates more constant particle velocity than the previous study. The insulator was fabricated using backside exposure for accurate forming. We measured the distribution of the particle velocity and frequency property, using homogeneous polystyrene particles to verify the effectiveness of the proposed device. The results show that the particle velocity distribution was consistent with the distribution of the numerically calculated electric field square (∇Erms2). Furthermore, the velocity measurement, at a wide frequency band, from 10 Hz to 20 MHz, was performed because of the long distance between electrodes. These results suggest that the prop-erties of various particles or cells can be obtained by simple measurement using the proposed device.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880631 | PMC |
http://dx.doi.org/10.3390/s22041533 | DOI Listing |
Sci Rep
December 2024
Jiangsu Key Laboratory of Oil-Gas Storage and Transportation Technology, Changzhou University, Changzhou, 213164, Jiangsu, China.
Bend pipe is a common part of long distance pipeline. There is very important to study the flow law of hydrate particles in the bend pipe, and pipeline design will be optimized. In addition, the efficiency and safety of pipeline gas transmission will be improved.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemical Engineering, Kyoto University, Nishi-kyoku, Kyoto, 615-8510, Japan.
The actomyosin cytoskeleton, a protein assembly comprising actin fibers and the myosin molecular motor, drives various cellular dynamics through contractile force generation at high densities. However, the relationship between the density dependence of the actomyosin cytoskeleton and force-controlled ordered structure remains poorly understood. In this study, we measured contraction-driven flow generation by varying the concentration of cell extracts containing the actomyosin cytoskeleton and associated nucleation factors.
View Article and Find Full Text PDFSci Rep
December 2024
School of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China.
Blasting excavation is widely used in mining, tunneling and construction industries, but it leads to produce ground vibration which can seriously damage the urban communities. The peak particle velocity (PPV) is one of main indicators for determining the extent of ground vibration. Owing to the complexity of blasting process, there is controversy over which parameters will be considered as the inputs for empirical equations and machine learning (ML) algorithms.
View Article and Find Full Text PDFDeveloping novel materials is an essential requirement in the engineering field. This study investigates the effects of incorporating wood dust particles on the mechanical and erosive wear properties of Luffa acutangula fiber (LAF)-reinforced phenol-formaldehyde composites, fabricated using the hand layup method with a constant 20% fiber content and varying wood dust particle contents of 0%, 10%, 20%, and 30%. Using the Taguchi method, the study identifies the optimal combination for minimizing erosive wear - 20% wood dust content, 45 m/s impact velocity, 60° impingement angle, 600 μm erodent size, and 60 mm standoff distance-achieving a minimum erosion rate of 189.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 St. Petersburg, Russia.
This study addresses issues in developing spatially controlled magnetic fields for particle guidance, synthesizing biocompatible and chemically stable MNPs and enhancing their specificity to pathological cells through chemical modifications, developing personalized adjustments, and highlighting the potential of tumor-on-a-chip systems, which can simulate tissue environments and assess drug efficacy and dosage in a controlled setting. The research focused on two MNP types, uncoated magnetite nanoparticles (mMNPs) and carboxymethyl dextran coated superparamagnetic nanoparticles (CD-SPIONs), and evaluated their transport properties in microfluidic systems and porous media. The original uncoated mMNPs of bimodal size distribution and the narrow size distribution of the fractions (23 nm and 106 nm by radii) were demonstrated to agglomerate in magnetically driven microfluidic flow, forming a stable stationary web consisting of magnetic fibers within 30 min.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!