Unmanned traffic management (UTM) systems rely on collaborative position reporting to track unmanned aerial system (UAS) operations over wide unsurveilled (with counter-UAS systems) areas. Many different technologies, such as Remote-ID, ADS-B, FLARM, or MLAT might be used for this purpose, in addition to the direct exploitation of C2 telemetry, relayed though cellular networks. This paper provides an overview of the most used collaborative sensors and surveillance systems in this context, analyzing their main technical parameters and performance effects. In addition, this paper proposes an abstracted general statistical simulation model covering message encoding, network capacity and access, sensors coverage and distribution, message transmission and decoding. Making use of this abstracted model, this paper proposes a particularized set of simulation models for ADS-B, FLARM and Remote-Id; it is thus useful to test their potential integration in UTM systems. Finally, a comparative analysis, based on simulation, of these systems, is performed. It is shown that the most relevant effects are those related with quantification and the potential saturation of the communication channels leading to collisions and delays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8877271PMC
http://dx.doi.org/10.3390/s22041498DOI Listing

Publication Analysis

Top Keywords

unmanned traffic
8
traffic management
8
utm systems
8
ads-b flarm
8
paper proposes
8
systems
5
modelling simulation
4
simulation collaborative
4
collaborative surveillance
4
surveillance unmanned
4

Similar Publications

Predictive Forwarding Rule Caching for Latency Reduction in Dynamic SDN.

Sensors (Basel)

December 2024

Department of Electrical Engineering & Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.

In mission-critical environments such as industrial and military settings, the use of unmanned vehicles is on the rise. These scenarios typically involve a ground control system (GCS) and nodes such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs). The GCS and nodes exchange different types of information, including control data that direct unmanned vehicle movements and sensor data that capture real-world environmental conditions.

View Article and Find Full Text PDF

To address the issue of safe, orderly, and efficient operation for unmanned vehicles within the apron area in the future, a hardware framework of aircraft-vehicle-airfield collaboration and a trajectory planning method for unmanned vehicles on the apron were proposed. As for the vehicle-airfield perspective, a collaboration mechanism between flight support tasks and unmanned vehicle departure movement was constructed. As for the latter, a control mechanism was established for the right-of-way control of the apron.

View Article and Find Full Text PDF

In response to the current situation of backward automation levels, heavy labor intensities, and high accident rates in the underground coal mine auxiliary transportation system, the mining trackless auxiliary transportation robot (MTATBOT) is presented in this paper. The MTATBOT is specially designed for long-range, space-constrained, and explosion-proof underground coal mine environments. With an onboard perception and autopilot system, the MTATBOT can perform automated and unmanned subterranean material transportation.

View Article and Find Full Text PDF

This paper proposes an Improved Spider Wasp Optimizer (ISWO) to address inaccuracies in calculating the population (N) during iterations of the SWO algorithm. By innovating the population iteration formula and integrating the advantages of Differential Evolution and the Crayfish Optimization Algorithm, along with introducing an opposition-based learning strategy, ISWO accelerates convergence. The adaptive parameters trade-off probability (TR) and crossover probability (Cr) are dynamically updated to balance the exploration and exploitation phases.

View Article and Find Full Text PDF

This paper proposes an Improved Lemur Optimization algorithm (ILO), which combines the advantages of the Spider Monkey Optimization algorithm, Simulated Annealing algorithm, and Lemur Optimization algorithm. Through the use of an adaptive nonlinear decrement model, adaptive learning factors, and updated jump rates, the algorithm enhances its global exploration and local exploitation capabilities. A Gaussian function model is used to simulate the mountain environment, and a mathematical model for UAV flight is established based on constraints and objective functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!