Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Inter-robot communication and high computational power are challenging issues for deploying indoor mobile robot applications with sensor data processing. Thus, this paper presents an efficient cloud-based multirobot framework with inter-robot communication and high computational power to deploy autonomous mobile robots for indoor applications. Deployment of usable indoor service robots requires uninterrupted movement and enhanced robot vision with a robust classification of objects and obstacles using vision sensor data in the indoor environment. However, state-of-the-art methods face degraded indoor object and obstacle recognition for multiobject vision frames and unknown objects in complex and dynamic environments. From these points of view, this paper proposes a new object segmentation model to separate objects from a multiobject robotic view-frame. In addition, we present a support vector data description (SVDD)-based one-class support vector machine for detecting unknown objects in an outlier detection fashion for the classification model. A cloud-based convolutional neural network (CNN) model with a SoftMax classifier is used for training and identification of objects in the environment, and an incremental learning method is introduced for adding unknown objects to the robot knowledge. A cloud-robot architecture is implemented using a Node-RED environment to validate the proposed model. A benchmarked object image dataset from an open resource repository and images captured from the lab environment were used to train the models. The proposed model showed good object detection and identification results. The performance of the model was compared with three state-of-the-art models and was found to outperform them. Moreover, the usability of the proposed system was enhanced by the unknown object detection, incremental learning, and cloud-based framework.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8962993 | PMC |
http://dx.doi.org/10.3390/s22041352 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!