Physiologically Based Pharmacokinetic (PBPK) Model of Gold Nanoparticle-Based Drug Delivery System for Stavudine Biodistribution.

Pharmaceutics

Area of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Avda Lcdo Méndez Nieto, 37007 Salamanca, Spain.

Published: February 2022

Computational modelling has gained attention for evaluating nanoparticle-based drug delivery systems. Physiologically based pharmacokinetic (PBPK) modelling provides a mechanistic approach for evaluating drug biodistribution. The aim of this work is to develop a specific PBPK model to simulate stavudine biodistribution after the administration of a 40 nm gold nanoparticle-based drug delivery system in rats. The model parameters used have been obtained from literature, in vitro and in vivo studies, and computer optimization. Based on these, the PBPK model was built, and the compartments included were considered as permeability rate-limited tissues. In comparison with stavudine solution, a higher biodistribution of stavudine into HIV reservoirs and the modification of pharmacokinetic parameters such as the mean residence time (MRT) have been observed. These changes are particularly noteworthy in the liver, which presents a higher partition coefficient (from 0.27 to 0.55) and higher MRT (from 1.28 to 5.67 h). Simulated stavudine concentrations successfully describe these changes in the in vivo study results. The average fold error of predicted concentrations after the administration of stavudine-gold nanoparticles was within the 0.5-2-fold error in all of the tissues. Thus, this PBPK model approach may help with the pre-clinical extrapolation to other administration routes or the species of stavudine gold nanoparticles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875329PMC
http://dx.doi.org/10.3390/pharmaceutics14020406DOI Listing

Publication Analysis

Top Keywords

pbpk model
16
nanoparticle-based drug
12
drug delivery
12
physiologically based
8
based pharmacokinetic
8
pharmacokinetic pbpk
8
gold nanoparticle-based
8
delivery system
8
stavudine biodistribution
8
stavudine
6

Similar Publications

A cross-species assessment of in silico prediction methods of steady-state volume of distribution using Simcyp Simulators.

J Pharm Sci

December 2024

Certara UK Ltd., Certara Predictive Technologies Division, 1 Concourse Way, Level 2-Acero, Sheffield, S1 2BJ, United Kingdom. Electronic address:

Predicting steady-state volume of distribution (V) is a key component of pharmacokinetic predictions and often guided using preclinical data. However, when bottom-up prediction from physiologically-based pharmacokinetic (PBPK) models and observed V misalign in preclinical species, or predicted V from different models varies significantly, no consensus exists for selecting models or preclinical species to improve the prediction. Through systematic analysis of V prediction across rat, dog, monkey, and human, using common methods, a practical strategy for predicting human V, with or without integration of preclinical PK information is warranted.

View Article and Find Full Text PDF

Amphotericin B (AmB) has been a cornerstone in the treatment of invasive fungal infections for over 6 decades. Compared with conventional amphotericin B deoxycholate (AmB-DOC), liposomal amphotericin B has comparable efficacy but less nephrotoxicity. The main purpose of this study was to investigate the reason why liposomal amphotericin B has similar therapeutic effects but lower toxicity and the differences of distribution in humans between liposomal amphotericin B and AmB-DOC.

View Article and Find Full Text PDF

Escitalopram is commonly prescribed for depressive and anxiety disorders in elderly patients, who often show variable drug responses and face higher risks of side effects due to age-related changes in organ function. The CYP2C19 polymorphism may further affect escitalopram pharmacokinetics in elderly patients, complicating dose optimization for this group. Previous pharmacogenetic studies examining the impact of CYP2C19 phenotype on escitalopram treatment outcomes have primarily focused on younger adults, leaving a gap in understanding its effects on the elderly.

View Article and Find Full Text PDF

Background And Objective: This study provides a physiologically based pharmacokinetic (PBPK) model-based analysis of the potential drug-drug interaction (DDI) between cyclosporin A (CsA), a breast cancer resistance protein transporter (BCRP) inhibitor, and methotrexate (MTX), a putative BCRP substrate.

Methods: PBPK models for CsA and MTX were built using open-source tools and published data for both model building and for model verification and validation. The MTX and CsA PBPK models were evaluated for their application in simulating BCRP-related DDIs.

View Article and Find Full Text PDF

Ritonavir (RTV) is a potent CYP3A inhibitor that is widely used as a pharmacokinetic (PK) enhancer to increase exposure to select protease inhibitors. However, as a strong and complex perpetrator of CYP3A interactions, RTV can also enhance the exposure of other co-administered CYP3A substrates, potentially causing toxicity. Therefore, the prediction of drug-drug interactions (DDIs) and estimation of dosing requirements for concomitantly administered drugs is imperative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!