Biosurfactants as Anticancer Agents: Glycolipids Affect Skin Cells in a Differential Manner Dependent on Chemical Structure.

Pharmaceutics

Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine BT52 1SA, UK.

Published: February 2022

Melanomas account for 80% of skin cancer deaths. Due to the strong relationship between melanomas and U.V. radiation, sunscreens have been recommended for use as a primary preventative measure. However, there is a need for targeted, less invasive treatment strategies. Glycolipids such as sophorolipids and rhamnolipids are microbially derived biosurfactants possessing bioactive properties such as antimicrobial, immunomodulatory and anticancer effects. This study aimed to ascertain the differing effects of glycolipids on skin cells. Highly purified and fully characterized preparations of sophorolipids and rhamnolipids were used to treat spontaneously transformed human keratinocyte (HaCaT) and the human malignant melanocyte (SK-MEL-28) cell lines. Cell viability and morphological analyses revealed that glycolipids have differential effects on the skin cells dependent on their chemical structure. Lactonic sophorolipids and mono-rhamnolipids were shown to have a significantly detrimental effect on melanoma cell viability compared to healthy human keratinocytes. These glycolipids were shown to induce cell death via necrosis. Additionally, sophorolipids were shown to significantly inhibit SK-MEL-28 cell migration. These findings suggest that glycolipids could be used as bioactive agents with selective inhibitory effects. As such, glycolipids could be a substitute for synthetically derived surfactants in sunscreens to provide additional benefit and have the potential as novel anti-skin-cancer therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8874633PMC
http://dx.doi.org/10.3390/pharmaceutics14020360DOI Listing

Publication Analysis

Top Keywords

skin cells
12
dependent chemical
8
chemical structure
8
sophorolipids rhamnolipids
8
effects glycolipids
8
sk-mel-28 cell
8
cell viability
8
glycolipids
7
cell
5
biosurfactants anticancer
4

Similar Publications

Persimmon (Diospyros kaki L.) leaves are a traditional medicinal herb used for treating many infectious and inflammatory-related conditions, including wound healing. To validate its traditional use, our study evaluates the acute toxicity and wound-healing effects of methanolic extracts of Persimmon (Diospyros kaki L.

View Article and Find Full Text PDF

Calcium hydroxide nanoparticles (Ca(OH)NPs) possess potent antimicrobial activities and unique physical and chemical properties, making them valuable across various fields. However, limited information exists regarding their effects on genomic DNA integrity and their potential to induce apoptosis in normal and cancerous human cell lines. This study thus aimed to evaluate the impact of Ca(OH)NPs on cell viability, genomic DNA integrity, and oxidative stress induction in human normal skin fibroblasts (HSF) and cancerous hepatic (HepG2) cells.

View Article and Find Full Text PDF

Exosome-Like Vesicles from Callus Enhanced Wound Healing by Reducing LPS-Induced Inflammation.

J Microbiol Biotechnol

November 2024

Preclinical Research Center, Daegu Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea.

(LE), a medicinal plant from the Boraginaceae family, is traditionally used in East Asia for its therapeutic effects on skin conditions, including infections, inflammation, and wounds. Recently, the role of extracellular vesicles (EVs) as mediators of intercellular communication that regulate inflammation and promote tissue regeneration has garnered increasing attention in the field of regenerative medicine. This study investigates exosome-like vesicles derived from LE callus (LELVs) and their potential in enhancing wound healing.

View Article and Find Full Text PDF

Microneedle patch-involved local therapy synergized with immune checkpoint inhibitor for pre- and post-operative cancer treatment.

J Control Release

January 2025

State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, PR China. Electronic address:

The metastasis and recurrence of cancer post-surgery remain the major reasons for treatment failures. Herein, a photo-immune nanoparticle decorating with M1 macrophage membrane (BD@LM) is designed based on the inflammatory environment after surgical resection. By loading photosensitizer black phosphorus quantum dots (BPQDs) and chemotherapeutics doxorubicin (DOX) in BD@LM nanoparticles, an effective chemophototherapy-mediated immunogenic cell death of tumor cells is triggered, subsequently leading to the maturation of dendritic cells for further immune cascade.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!