While the inhalation route has been used for millennia for pharmacologic effect, the biological barriers to treating lung disease created real challenges for the pharmaceutical industry until sophisticated device and formulation technologies emerged over the past fifty years. There are now several inhaled device technologies that enable delivery of therapeutics at high efficiency to the lung and avoid excessive deposition in the oropharyngeal region. Chemistry and formulation technologies have also emerged to prolong retention of drug at the active site by overcoming degradation and clearance mechanisms, or by reducing the rate of systemic absorption. These technologies have also been utilized to improve tolerability or to facilitate uptake within cells when there are intracellular targets. This paper describes the biological barriers and provides recent examples utilizing formulation technologies or drug chemistry modifications to overcome those barriers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880668PMC
http://dx.doi.org/10.3390/pharmaceutics14020302DOI Listing

Publication Analysis

Top Keywords

biological barriers
12
formulation technologies
12
technologies emerged
8
technologies
5
strategies overcome
4
overcome biological
4
barriers
4
barriers associated
4
associated pulmonary
4
pulmonary drug
4

Similar Publications

Interactions of polyelectrolytes (PEs) with proteins play a crucial role in numerous biological processes, such as the internalization of virus particles into host cells. Although docking, machine learning methods, and molecular dynamics (MD) simulations are utilized to estimate binding poses and binding free energies of small-molecule drugs to proteins, quantitative prediction of the binding thermodynamics of PE-based drugs presents a significant obstacle in computer-aided drug design. This is due to the sluggish dynamics of PEs caused by their size and strong charge-charge correlations.

View Article and Find Full Text PDF

Application of nanomaterials in precision treatment of lung cancer.

iScience

January 2025

Department of Thoracic Surgery, Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China.

Lung cancer remains one of the most prevalent and lethal malignancies worldwide, characterized by high mortality rates due to its aggressive nature, metastatic potential, and drug resistance. Despite advancements in conventional therapies, their efficacy is often limited by systemic toxicity, poor tumor specificity, and the emergence of resistance mechanisms. Nanomedicine has emerged as a promising approach to address these challenges, leveraging the unique physicochemical properties of nanomaterials to enhance drug delivery, reduce off-target effects, and enable combination therapies.

View Article and Find Full Text PDF

Fistula in Crohn's disease: classification, pathogenesis, and treatment options.

Tissue Barriers

January 2025

Department of Gastroenterology and Hepatology, Virginia Tech Carilion School of Medicine (VTCSOM), Carilion Clinic, Roanoke, VA, USA.

Crohn's disease is a form of inflammation that affects the gastrointestinal (GI) tract. It is characterized by persistent inflammation in the gut, which can lead to the formation of abnormal connections called fistulas. These fistulas can occur between the GI tract and the abdominal cavity, adjacent organs, or the skin.

View Article and Find Full Text PDF

Background: Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance.

View Article and Find Full Text PDF

Background: SIREN is a healthcare worker cohort study aiming to determine COVID-19 incidence, duration of immunity and vaccine effectiveness across 135 NHS organisations in four UK nations. Conducting an intensive prospective cohort study during a pandemic was challenging. We designed an evolving retention programme, informed by emerging evidence on best practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!