Background: In older adults, kidney function declines with age. People with advanced kidney diseases may have poor olfaction. However, it is unclear whether poor olfaction is a marker for declining renal function or future risk of chronic kidney disease (CKD). We therefore investigated olfaction in relation to kidney function and risk of CKD.
Methods: These secondary data analyses were limited to participants of the year 3 clinical visit of the Health Aging and Body Composition Study. The analytic sample size varied between 1427 to 2531, depending on participant eligibility and data availability for each analysis. Olfaction was tested using the Brief Smell Identification Test (B-SIT), defined as anosmia (score≤6), hyposmia (7-8), moderate (9-10), and good function (10-11) at baseline. We estimated glomerular filter rate (eGFR) at baseline and seven years later using the CKD-EPI creatinine-cystatin C equation, and defined incident CKD as eGFR<60 ml/min/1.73m2 and eGFR decline ≥1 ml/min/1.73m2/year. Further, we identified CKD hospitalization events from hospitalization and death records. We used inverse probability weighting and weighted multivariable regressions to account for censoring in the prospective analyses and used absolute risk regression to account for competing risk of death.
Results: At baseline, compared to participants with good olfaction, the multivariable-adjusted mean eGFR was 3.00 ml/min/1.73m2 lower (95% confidence interval (CI): -5.25, -0.75) for those with anosmia and 1.87 lower (95% CI: -3.94, 0.21) for those with hyposmia with a P for linear trend < 0.001. Those with anosmia at baseline was had a significantly lower eGFR seven years later (-5.31, 95% CI: -8.58, -2.04, P for trend = 0.002), but the association was attenuated after further accounting for baseline eGFR (-2.37, 95%CI: -4.91, 0.16, P for linear trend = 0.147). Olfactory function was not associated with incident CKD or CKD hospitalization.
Conclusion: In older adults > age 70 years, poor olfaction is associated with lower kidney function, but not future CKD risk. These associations should be further investigated in relatively younger population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880852 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0264448 | PLOS |
FASEB J
January 2025
Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China.
Spaceflight-induced multi-organ dysfunction affects the health of astronauts and the safety of in-orbit flight. However, the effect of microgravity on the kidney and the underlying mechanisms are unknown. In the current study, we used a hindlimb unweighting (HU) animal model to simulate microgravity and employed histological analysis, ischemia-reperfusion experiments, renal ultrasonography, bioinformatics analysis, isometric force measurement, and other molecular experimental settings to evaluate the effects of microgravity on the kidneys and the underlying mechanisms involved in this transition.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
Department of Radiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, China.
Background: Multifrequency MR elastography (mMRE) enables noninvasive quantification of renal stiffness in patients with chronic kidney disease (CKD). Manual segmentation of the kidneys on mMRE is time-consuming and prone to increased interobserver variability.
Purpose: To evaluate the performance of mMRE combined with automatic segmentation in assessing CKD severity.
FASEB J
January 2025
Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
Nuclear factor of activated T-cells 5 (NFAT5) is a transcription factor known for its role in osmotic stress adaptation in the renal inner medulla, due to the osmotic gradient that is generated between the renal cortex and renal inner medulla. However, its broader implications in kidney injury and chronic kidney disease (CKD) are less understood. Here we used two different Cre deleter mice (Ksp1.
View Article and Find Full Text PDFIr J Med Sci
January 2025
Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Glomerular filtration rate (GFR) as a marker of kidney function is important in health and disease management because decreased kidney function is associated with all-cause and cardiovascular mortality, progression of kidney disease, predisposition to acute kidney injury (AKI), and for drug dosage modification. While measured glomerular filtration rate (mGFR) is acknowledged as the most accurate method for evaluating kidney function, it is at present not feasible to be applied in the clinical arena. Estimated glomerular filtration rate (eGFR) is preferred due to its convenience, cost-effectiveness, and seamless integration into standard clinical practice for kidney function evaluation.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
School of Medicine, Department of Radiology, Hacettepe University, Ankara, Turkey.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!