The Semliki Forest Virus (SFV) is an RNA virus with a positive-strand that belongs to the Togaviridae family's Alphavirus genus. An epidemic was observed among French troops stationed in the Central African Republic, most likely caused by the SFV virus. The two transmembrane proteins El and E2 and the peripheral protein E3 make up the viral spike protein. The virus binds to the host cell and is internalized via endocytosis; endosome acidification causes the E1/E2 heterodimer to dissociate and the E1 subunits to trimerize. Lupenone was evaluated against the E1 spike protein of SFV in this study based on state-of-the-art cheminformatics approaches, including molecular docking, molecular dynamics simulation, and binding free energy calculation. The molecular docking study envisaged major interactions of Lupenone with binding cavity residues involved non-bonded van der Waal's and Pi-alkyl interactions. Molecular dynamic simulation of a time scale 200 ns corroborated interaction pattern with molecular docking studies between Lupenone and E1 spike protein. Nevertheless, Lupenone intearcation with the E1 spike protein conforming into a stable complex substantiated by free energy landscape (FEL), PCA analysis. Free energy decomposition of the binding cavity resdiues of E1 spike protein also ensured the efficient non-bonded van der Waal's interaction contributing most energy to interact with the Lupenone. Therefore, Lupenone interacted strongly at the active site conforming into higher structural stability throughout the dynamic evolution of the complex. Thus, this study perhaps comprehend the efficiency of Lupenone as lead molecule against SFV E1 spike protein for future therapeutic purpose.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880844PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0263853PLOS

Publication Analysis

Top Keywords

spike protein
24
molecular docking
12
free energy
12
lupenone
8
semliki forest
8
forest virus
8
binding cavity
8
non-bonded van
8
van der
8
der waal's
8

Similar Publications

Disparities in anti-nucleocapsid and anti-spike SARS-CoV-2 antibody prevalence in NYC - April-October 2021.

Ann Epidemiol

December 2024

Bureau of Epidemiology Services, Center for Population Health Data Science, NYC Department of Health & Mental Hygiene, 42-09 28(th) St, Queens, NY 11101.

Purpose: Between April-October 2021, the New York City (NYC) Health Department conducted a serosurvey to assess prevalence of SARS-CoV-2 antibodies in NYC adults as part of continued COVID-19 surveillance efforts.

Methods: Whole blood specimens were collected from 1,035 adult NYC residents recruited from an annual population-based health surveillance survey. Specimens were tested for the presence of anti-SARS-CoV-2 spike protein (anti-spike) and anti-SARS-CoV-2 nucleocapsid protein (anti-nucleocapsid) antibodies.

View Article and Find Full Text PDF

SARS-CoV-2, the cause of COVID-19, primarily targets lung tissue, leading to pneumonia and lung injury. The spike protein of this virus binds to the common receptor on susceptible tissues and cells called the angiotensin-converting enzyme-2 (ACE2) of the angiotensin (ANG) system. In this study, we produced chimeric Macrobrachium rosenbergii nodavirus virus-like particles, presenting a short peptide ligand (ACE2tp), based on angiotensin-II (ANG II), on their outer surfaces to allow them to specifically bind to ACE2-overexpressing cells called ACE2tp-MrNV-VLPs.

View Article and Find Full Text PDF

Immunologic assessment of the impact of SARS-CoV-2 vaccine booster doses on humoral immunity: a cross-sectional study in morocco.

BMC Infect Dis

December 2024

Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco.

To assess the impact of the SARS-CoV-2 booster dose on the immune response against COVID-19, we conducted a cross-sectional study in the Casablanca-Settat region of Morocco. The study included 2,802 participants from 16 provinces, all of whom had received three doses of a SARS-CoV-2 vaccine. IgG antibodies targeting the S1 RBD subunit of the SARS-CoV-2 spike protein were quantified using the SARS-CoV-2 IgG II Quant assay and measured on the Abbott Architect i2000SR instrument.

View Article and Find Full Text PDF

Increased immune evasion by emerging and highly mutated SARS-CoV-2 variants is a key challenge to the control of COVID-19. The majority of these mutations mainly target the spike protein, allowing the new variants to escape the immunity previously raised by vaccination and/or infection by earlier variants of SARS-CoV-2. In this study, we investigated the neutralizing capacity of antibodies against emerging variants of interest circulating between May 2023 and October 2024 using sera from representative samples of the Kenyan population.

View Article and Find Full Text PDF

Acidic pH of Early Endosomes Governs SARS-CoV-2 Transport in Host Cells.

J Biol Chem

December 2024

Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, USA. Electronic address:

Endocytosis is a prominent mechanism for SARS-CoV-2 entry into host cells. Upon internalization into early endosomes (EEs), the virus is transported to late endosomes (LEs), where acidic conditions facilitate spike protein processing and viral genome release. Dynein and kinesin motors drive EE transport along microtubules; dynein moves EEs to the perinuclear region, while kinesins direct them towards the plasma membrane, creating a tug-of-war over the direction of transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!