Background: Closed-loop neuromodulation systems have received increased attention in recent years as potential therapeutic approaches for treating neurological injury and disease.
Objective: The purpose of this study was to assess the ability of intraspinal microstimulation (ISMS), triggered by action potentials (spikes) recorded in motor cortex, to alter synaptic efficacy in descending motor pathways in an anesthetized rat model of spinal cord injury (SCI).
Methods: Experiments were carried out in adult, male, Sprague Dawley rats with a moderate contusion injury at T8. For activity-dependent stimulation (ADS) sessions, a recording microelectrode was used to detect neuronal spikes in motor cortex that triggered ISMS in the spinal cord grey matter. SCI rats were randomly assigned to one of four experimental groups differing by: a) cortical spike-ISMS stimulus delay (10 or 25 ms) and b) number of ISMS pulses (1 or 3). Four weeks after SCI, ADS sessions were conducted in three consecutive 1-hour conditioning bouts for a total of 3 hours. At the end of each conditioning bout, changes in synaptic efficacy were assessed using intracortical microstimulation (ICMS) to examine the number of spikes evoked in spinal cord neurons during 5-minute test bouts. A multichannel microelectrode recording array was used to record cortically-evoked spike activity from multiple layers of the spinal cord.
Results: The results showed that ADS resulted in an increase in cortically-evoked spikes in spinal cord neurons at specific combinations of spike-ISMS delays and numbers of pulses. Efficacy in descending motor pathways was increased throughout all dorsoventral depths of the hindlimb spinal cord.
Conclusions: These results show that after an SCI, ADS can increase synaptic efficacy in spared pathways between motor cortex and spinal cord. This study provides further support for the potential of ADS therapy as an effective method for enhancing descending motor control after SCI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9108576 | PMC |
http://dx.doi.org/10.3233/RNN-211214 | DOI Listing |
BMC Health Serv Res
January 2025
Department of Social Welfare Management, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
Objectives: Rehabilitation services are crucial for improving the quality of life and overall health of individuals with spinal cord injuries (SCIs). However, access to adequate rehabilitation remains limited in many regions, including Iran. This study aims to explore the barriers faced by individuals with SCIs in accessing appropriate rehabilitation services within Golestan province, northern of Iran.
View Article and Find Full Text PDFSpine Deform
January 2025
Department of Orthopaedics, Spinal Deformity and Pediatric Orthopaedics, Billie and George Ross Center for Advanced Pediatric Orthopaedics and Minimally Invasive Spinal Surgery, Cohen Children's Medical Center, Northwell Hofstra School of Medicine, 7 Vermont Drive, Lake Success, NY, 11042, USA.
Purpose: In congenital scoliosis, the surgical strategy approach of hemivertebra excision, with or without instrumentation and fusion, is a common approach to correction of scoliosis. However, hemivertebra excisions are technically challenging, with potential complications including spinal cord injury, nerve root injury and cerebrospinal fluid leak. The purpose of this study was to determine whether correction of congenital scoliosis can be achieved using a posterior instrumentation/fusion-only approach without the need for hemivertebra excision.
View Article and Find Full Text PDFCell Death Differ
January 2025
Translational Research Centre of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
Ferroptosis is one of the cell death programs occurring after spinal cord injury (SCI) and is driven by iron-dependent phospholipid peroxidation. However, little is known about its underlying regulation mechanism. The present study demonstrated that lipid peroxidation was promoted in patients with SCI.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
Lower urinary tract symptoms (LUTS) significantly affect patient quality of life. Treatment options for bladder outlet obstruction (BOO) due to benign prostatic hyperplasia (BPH) (a common cause of LUTS) are insufficient to relieve discomfort. As the incidence of BPH is increasing, new pharmacological targets for LUTS treatment are required.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biomedical Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA.
Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels, and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (up to 20,000 cycles at 20% strain) with a stretchability of 64.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!