Here, we, for the first time, report on the simultaneous enhancement in cubic phase stability and Li-ion conductivity of garnet-type solid electrolytes (SEs) by adding excess Li/Al. The excess Al/Li creates very large grains of up to 170 μm via the segregation of Al at the grain boundaries and enables preferential Al occupation at 96h sites over 24d sites, a behavior contrary to previous observations. The resulting SE shows improved Li-ion conductivity due to the large grain size and less blocking Li pathway caused by different preferential Al occupation. Surprisingly, it is observed that the cubic phase of the garnet-type SE is transformed to the tetragonal phase on the surface and in the bulk under the applied voltage, and the preferential Al occupation enables its cubic phase stability. Under battery operating conditions, the LLZO SE with excess Li/Al can maintain high ionic conductivity due to the cubic phase stability and large grain size. We clearly demonstrate that the cubic phase stability and ionic conductivity of LLZO can be simultaneously improved by excess Li/Al without any post-treatments. The findings and understanding will provide new insights into practical use of the garnet-type SEs for advanced all solid-state batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c01361DOI Listing

Publication Analysis

Top Keywords

cubic phase
24
phase stability
20
li-ion conductivity
12
excess li/al
12
preferential occupation
12
simultaneously improved
8
stability li-ion
8
conductivity garnet-type
8
garnet-type solid
8
solid electrolytes
8

Similar Publications

In this work, cerium dioxide nanostructures were synthesized in an easy sonochemical way. CeO nanoparticles have received much attention in nanotechnology. CeONPs, exhibit biomimetic properties depending on their size, ratio of valency on their surface, and the ambient physico-chemical properties.

View Article and Find Full Text PDF

Discovery and Characterization of a Metastable Cubic Interstitial Nickel-Carbon System with an Expanded Lattice.

ACS Nano

January 2025

Faculty III Process Sciences, Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.

Metastable, , kinetically favored but thermodynamically not stable, interstitial solid solutions of carbon in iron are well-understood. Carbon can occupy the interstitial atoms of the host metal, altering its properties. Alloying of the host metal results in the stabilization of the FeC phases, widening its application.

View Article and Find Full Text PDF

Reinvestigating atomic ordering in KNaNbOand its impact on ferroelectric properties.

J Phys Condens Matter

January 2025

Physics, Indian Institute of Technology Banaras Hindu University, Indian Institute of Technology (Banaras Hindu University), Department of Physics, Varanasi, Varanasi, Uttar Pradesh, 221005, INDIA.

In the present work, we reinvestigate the atomic ordering of a Pb-free Morphotropic Phase Boundary (MPB) composition viz., K0.5Na0.

View Article and Find Full Text PDF

The reverse water gas shift reaction (RWGS) mechanism study on the γ-MoC(100) surface.

RSC Adv

January 2025

Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University Taiyuan 030006 China

CO conversion and reuse technology are crucial for alleviating environmental stress and promoting carbon cycling. Reverse water gas shift (RWGS) reaction can transform inert CO into active CO. Molybdenum carbide (MoC) has shown good performance in the RWGS reaction, and different crystalline phases exhibit distinct catalytic behaviors.

View Article and Find Full Text PDF

This study presents the development and characterization of high yttrium-content phosphate-based glass-ceramic microspheres for potential applications in bone cancer radiotherapy treatment. The microspheres produced via flame spheroidization, followed by sieving, revealed a lack of aggregation and a narrow size distribution (45-125 μm) achieved across different yttrium oxide to glass ratio samples. Energy dispersive X-ray (EDX) analysis showed a significant increase in yttrium content within the microspheres with increasing yttrium oxide to glass ratio samples, ranging from approximately 1-39 mol % for 10Y-50Y microspheres, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!