Purpose: This study aimed to evaluate the antioxidant and antidiabetic properties of clove essential oil (CEO) and to elucidate its mode of action, using selected biochemical targets, relevant to diabetes, and, specifically, its inhibitory effect on the polyol pathway.

Methods: In the current study, CEO was examined for its inhibitory effects on aldose reductase in silico, in vitro, and in vivo, as well as its antioxidative activity.

Results: In silico docking studies showed that all the selected major compounds of CEO have an energy change ranging between - 5.5 and - 8.8 kcal/mol and an inhibition constant ranging between 357.08 nM and 93.12 µM. CEO significantly inhibits aldose reductase with an IC value of 58.55 ± 5.84 µg/mL in a noncompetitive manner. The supplementation of CEO at 20 mg/kg BW decreases retinal sorbitol dehydrogenase activity via decreased aldose reductase activity in streptozotocin (STZ)-induced diabetic Sprague Dawley rats. Moreover, diabetic rats injected with CEO have exhibited improved levels of glycemia. The IC values for ABTS, hydroxyl, and hydrogen peroxide scavenging activities of CEO were found to be 34.42, 277.4, and 39.99 µg/mL, respectively. Reducing power assay and phosphomolybdate assay exhibited a reduction force with the A values of 50.25 and 140.16 µg/mL, respectively.

Conclusion: CEO potentially exerts a beneficial effect on diabetes-related complications due to its antioxidant and inhibitory effect on aldose reductase activity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s42000-021-00347-6DOI Listing

Publication Analysis

Top Keywords

aldose reductase
20
clove essential
8
essential oil
8
silico vitro
8
vitro vivo
8
ceo
8
reductase activity
8
aldose
5
reductase
5
syzygium aromaticum
4

Similar Publications

Resistance of Populus davidiana × P. bolleana overexpressing cinnamoyl-CoA reductase gene to Lymantria dispar larvae.

Transgenic Res

January 2025

Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.

Lignin is a crucial defense phytochemical against phytophagous insects. Cinnamoyl-CoA reductase (CCR) is a key enzyme in lignin biosynthesis. In this study, transgenic Populus davidiana × P.

View Article and Find Full Text PDF

Type 2 diabetes has become a significant global health challenge. Numerous drugs have been developed to treat the condition, either as standalone therapies or in combination when glycemic control cannot be achieved with a single medication. As existing treatments often come with limitations, there is an increasing focus on creating novel therapeutic agents that offer greater efficacy and fewer side effects to better address this widespread issue.

View Article and Find Full Text PDF

Introduction: Diabetic retinopathy is a significant microvascular disorder and the leading cause of vision impairment in working-age individuals. Hyperglycemia triggers retinal damage through mechanisms such as the polyol pathway and the accumulation of advanced glycation end products (AGEs). Inhibiting key enzymes in this pathway, aldose reductase (AR) and sorbitol dehydrogenase (SD), alongside preventing AGE formation, may offer therapeutic strategies for diabetic retinopathy and other vascular complications.

View Article and Find Full Text PDF
Article Synopsis
  • B. pilosa L. is an edible herb traditionally used for healing, and a recent study conducted a detailed analysis of its extract using advanced techniques like UPLC/T-TOF-MS/MS and GC-MS.
  • The study found that unsaturated fatty acids (11.38%) and sterols (39.92%) were more prevalent in the extract than saturated fatty acids (8.69%) and hydrocarbons (6.6%), with oleic and palmitic acids being the most significant.
  • The extract exhibited a concentration-dependent suppression of cell proliferation in cancer cell lines and showed potential as an inhibitor for certain enzymes, although safety toxicity assessments were missing, indicating a need for further research on its therapeutic effects.
View Article and Find Full Text PDF

Plant cuticular waxes serve as highly responsive adaptations to variable environments. Aliphatic waxes consist of very-long-chain (VLC) compounds produced from 1-alcohol- or alkane-forming pathways. The existing variation in 1-alcohols and alkanes across Arabidopsis accessions revealed that 1-alcohol amounts are negatively correlated with aridity factors, whereas alkanes display the opposite behaviour.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!