Phase sensitive and heterodyne-detected (HD) sum-frequency generation (SFG) spectroscopy offers the ability to separate the nonlinear susceptibility into its real and imaginary components. This provides information about the absolute orientation of molecules at interfaces while also producing an absorptive spectrum that is linear in spectral composition and can easily be decomposed into different spectral components. However, simultaneously obtaining phase accuracy and phase stability remains a challenge in SFG. Here we present a new experimental design for HD-SFG spectroscopy that incorporates a wedge pair to accurately control the timing between the local oscillator and the sample signal. This experimental approach provides high phase accuracy and long-time phase stability in a compact and flexible configuration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.1c04175 | DOI Listing |
J Phys Chem Lett
January 2025
Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.
Elucidation of the vibrational relaxation process of interfacial water is indispensable for understanding energy dissipation at the aqueous interface. In this study, the vibrational relaxation dynamics of the hydrogen-bonded OH (HB OH) stretch vibration was investigated at the air/isotopically diluted water (HOD-DO) interface by time-resolved heterodyne-detected vibrational sum frequency generation (TR-HD-VSFG) spectroscopy. We observed the temporal change of the excited-state band ( = 1 → 2 transition), which enables a reliable determination of the time of interfacial water.
View Article and Find Full Text PDFJ Chem Phys
November 2024
Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Trombay, Mumbai 400085, India.
Polyethylene glycol (PEG) is a water soluble, non-ionic polymer with applications in drug delivery, protein precipitation, anti-biofouling, water-splitting, Li-ion batteries, and fuel cells. The interaction of PEG with water and electrolytes plays pivotal roles in such applications. Using interface-selective spectroscopy, heterodyne-detected vibrational sum frequency generation, and Raman difference spectroscopy with simultaneous curve fitting analysis, we show that water adopts different structures and orientations at the air/water-PEG interface, which depends on the molar mass of the PEG.
View Article and Find Full Text PDFJ Chem Phys
November 2024
Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Aqueous interfaces containing organic/inorganic molecules are important in various biological, industrial, and atmospheric processes. So far, the study on the dynamics of interfacial molecules has been carried out with time-resolved vibrational sum-frequency generation (TR-VSFG) and time-resolved electronic sum-frequency generation (TR-ESFG) techniques. Although the ESFG probe is powerful for investigating interfacial photochemical dynamics of solute molecules by monitoring the electronic transition of transients or photoproducts at the interface, heterodyne detection is highly desirable for obtaining straightforward information, particularly in time-resolved measurements.
View Article and Find Full Text PDFJ Chem Phys
October 2024
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 acyl ester linkage in phospholipid, producing lysophospholipid and fatty acid in the presence of Ca2+. The hydrolysis mediated by PLA2 has attracted much interest in various fields, such as pharmacy and biotechnology. It is recognized that PLA2 cannot hydrolyze phospholipid monolayers at high surface coverage.
View Article and Find Full Text PDFJ Phys Chem Lett
October 2024
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
Salt-in-water and water-in-salt mixtures are promising for battery applications and fine-tuning of room-temperature ionic liquid (RTIL) properties. Although critical processes take place at interfaces of these systems, including charge transfer and heterogeneous catalytic reactions, the microscopic interfacial structures remain unclear. Here, we apply heterodyne-detected sum-frequency generation spectroscopy to aqueous solutions of imidazolium-based RTILs to unveil the microscopic structure of the interfaces of these solutions with air.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!