Nanostructures have distinctive chemical and physical features owing to their surface area and nanoscale size. In this study, silver nanoparticles were synthesized using curcumin, a medicinally valuable natural product. The structure of curcumin-mediated silver nanoparticles (c-AgNPs) was identified by extensive spectroscopic techniques. The maximum absorption was observed at 430 nm in UV-Vis spectrum. The crystal structure of c-AgNPs was identified by XRD. The morphology of the structure was determined by SEM image. The particle size was found as 51.13 nm. The functional groups of curcumin and c-AgNPs were established by FTIR spectroscopy. Cytotoxic activity of c-AgNPs was carried out using A549, DLD-1, and L929 with MTT assay. c-AgNPs revealed excellent activity on DLD-1 cell lines and A549 cell lines at 1.0 mg/mL concentration with the lethal effect of 80%. However, nanoparticles did not show the considerable effect on L929. Moreover, they induced apoptosis. Consequently, c-AgNPs are a promising material for anticancer drugs candidate.

Download full-text PDF

Source
http://dx.doi.org/10.1515/znc-2021-0298DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
12
c-agnps identified
8
c-agnps
6
synthesis characterization
4
characterization silver
4
nanoparticles
4
nanoparticles curcumin
4
curcumin cytotoxic
4
cytotoxic apoptotic
4
apoptotic necrotic
4

Similar Publications

To design a multifunctional nanozyme hydrogel with antibacterial, photo-responsive nitric oxide-releasing, and antioxidative properties for promoting the healing of infected wounds. We first developed ultra-small silver nanoparticles (NPs)-decorated sodium nitroprusside-doped Prussian blue (SNPB) NPs, referred to as SNPB@Ag NPs, which served as a multifunctional nanozyme. Subsequently, this nanozyme, together with geniposide (GE), was incorporated into a thermo-sensitive hydrogel, formulated from Poloxamer 407 and carboxymethyl chitosan, creating a novel antibacterial wound dressing designated as GE/SNPB@Ag hydrogel.

View Article and Find Full Text PDF

This study introduces a novel method to enhance the antibacterial functionality of electrospun nanofibrous textiles by integrating silver nanoparticles (AgNPs) into poly (lactic acid) (PLA) fabrics through pre- and post-electrospinning techniques. AgNPs were incorporated into hydrophobic and modified hydrophilic PLA textiles via pre-solution blending and post-solution casting. A PEG-PPG-PEG tri-block copolymer was utilized to enhance hydrophilicity and water stability, while AgNPs served as antibacterial agents.

View Article and Find Full Text PDF

In Situ Preparation of Silver Nanoparticles/Organophilic-Clay/Polyethylene Glycol Nanocomposites for the Reduction of Organic Pollutants.

Polymers (Basel)

December 2024

Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.

This work focuses on the preparation and application of silver nanoparticles/organophilic clay/polyethylene glycol for the catalytic reduction of the contaminants methylene blue (MB) and 4-nitrophenol (4-NP) in a simple and binary system. Algerian clay was subjected to a series of treatments including acid treatment, ion exchange with the surfactant hexadecyltrimethylammonium bromide (HTABr), immobilization of polyethylene glycol polymer, and finally dispersion of AgNPs. The molecular weight of polyethylene glycol was varied (100, 200, and 4000) to study its effect on the stabilization of silver nanoparticles (AgNPs) and the catalytic activity of the resulting samples.

View Article and Find Full Text PDF

This study reports the development of highly conductive and stretchable fibrous membranes based on PVDF/PAN conjugate electrospinning with embedded silver nanoparticles (AgNPs) for wearable sensing applications. The fabrication process integrated conjugate electrospinning of PVDF/PAN, selective dissolution of polyvinylpyrrolidone (PVP) to create porous networks, and uniform AgNP incorporation via adsorption-reduction. Systematic optimization revealed that 10 wt.

View Article and Find Full Text PDF

Incorporating nanoparticles into denture materials shows promise for the prevention of denture-associated fungal infections. This study investigates the antifungal properties of acrylic modified with microwave-sintered ZnO-Ag nanoparticles. ZnO-Ag nanoparticles (1% and 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!