Complex pBAE Nanoparticle Cell Trafficking: Tracking Both Position and Composition Using Super Resolution Microscopy.

ChemMedChem

Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, De Zaale, Eindhoven, 5612 AZ (The, Netherlands.

Published: July 2022

Nanomedicine emerged some decades ago with the hope to be the solution for most unmet medical needs. However, tracking materials at nanoscale is challenging to their reduced size, below the resolution limit of most conventional techniques. In this context, we propose the use of direct stochastic optical reconstruction microscopy (dSTORM) to study time stability and cell trafficking after transfection of oligopeptide end-modified poly(β-aminoester) (OM-pBAE) nanoparticles. We selected different combinations of cationic end oligopeptides (arginine - R; histidine - H; and lysine - K) among polymer libraries, since the oligopeptide combination demonstrated to be useful for different applications, such as vaccination and gene silencing. We demonstrate that their time evolution as well as their cell uptake and trafficking are dependent on the oligopeptide. This study opens the pave to broad mechanistic studies at nanoscale that could enable a rational selection of specific pBAE nanoparticles composition after determining their stability and cell trafficking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400995PMC
http://dx.doi.org/10.1002/cmdc.202100633DOI Listing

Publication Analysis

Top Keywords

cell trafficking
12
stability cell
8
complex pbae
4
pbae nanoparticle
4
cell
4
nanoparticle cell
4
trafficking
4
trafficking tracking
4
tracking position
4
position composition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!