Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Facing the constant scaling down and thus increasingly severe self-heating effect, developing ultrathin and heat-insensitive ferroelectric devices is essential for future electronics. However, conventional ultrathin ferroelectrics and most 2D ferroelectric materials (2DFMs) are not suitable for high-temperature operation due to their low Curie temperature. Here, by using few-layer α-In Se , a special 2DFM with high Curie temperature, van der Waals (vdW) ferroelectric tunnel junction (FTJ) memories that deliver outstanding and reliable performance at both room and high temperatures are constructed. The vdW FTJs offer a large on/off ratio of 10 at room temperature and still reveal excellent on/off ratio at an ultrahigh temperature of 470 K, which will fail down other 2DFMs. Moreover, long retention and reliable cyclic endurance at high temperature are achieved, showing robust thermal stability of the vdW FTJ memory. The observations of this work demonstrate an exciting promise of α-In Se for reliable service in high temperature either from self-heating or harsh environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202101583 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!