Candidate genes responsible for lipid droplets formation during adipogenesis simultaneously affect osteoblastogenesis.

Folia Histochem Cytobiol

Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.

Published: March 2022

Introduction: With cellular lipid storage varying, the balance between lipid intake and lipid degradation was a must to keep healthy and determined the level of lipid droplets. Although lipid droplets accumulation had been well demonstrated in adipocytes, gene expression profiling and gene function during adipogenesis and osteoblastogenesis remain unknown.

Material And Methods: Here, this work profiled gene transcriptional landscapes of lipid droplets formation during adipogenesis from human mesenchymal stem cells (hMSCs) using RNA-Seq technique. By using RNA interference (RNAi) we investigated the function of candidate genes during adipogenesis and osteoblastogenesis using Oil Red/Alizarin Red/alkaline phosphatase (ALPL) staining and qRT-PCR (quantitative real-time PCR).

Results: Eleven differentially up-regulated genes associated with lipid droplets formation were identified at 3, 5, 7, 14, 21, and 28 days during adipogenesis. Unexpectedly, APOB per se inhibiting adipogenesis weakened osteoblastogenesis and METTL7A facilitating adipogenesis negligibly inhibited osteoblastogenesis according to the phenotypic characterization of adipocytes and osteoblasts and transcriptional condition of biomarkers through lentivirus transfection assays.

Conclusions: The establishment of the gene transcriptional profiling of lipid droplets formation would provide the molecular switches of hMSCs cell fate determination and the study targets for fat metabolic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.5603/FHC.a2022.0009DOI Listing

Publication Analysis

Top Keywords

lipid droplets
24
droplets formation
16
lipid
9
candidate genes
8
formation adipogenesis
8
adipogenesis osteoblastogenesis
8
gene transcriptional
8
adipogenesis
7
droplets
6
osteoblastogenesis
5

Similar Publications

The first step in chloroplast de novo fatty acid synthesis is catalysed by acetyl-CoA carboxylase (ACCase). As the rate-limiting step for this pathway, ACCase is subject to both positive and negative regulation. In this study, we identify a Chlamydomonas homologue of the plant carboxyltransferase interactor 1 (CrCTI1) and show that this protein interacts with the Chlamydomonas α-carboxyltransferase (Crα-CT) subunit of the ACCase by yeast two-hybrid protein-protein interaction assay.

View Article and Find Full Text PDF

Lipid Metabolic Heterogeneity during Early Embryogenesis Revealed by Hyper-3D Stimulated Raman Imaging.

Chem Biomed Imaging

January 2025

College of Biomedical Engineering & Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310058, China.

Studying embryogenesis is fundamental to understanding developmental biology and reproductive medicine. Its process requires precise spatiotemporal regulations in which lipid metabolism plays a crucial role. However, the spatial dynamics of lipid species at the subcellular level remains obscure due to technical limitations.

View Article and Find Full Text PDF

Alteration of Lipid Metabolism in Hypoxic Cancer Cells.

Chem Biomed Imaging

January 2025

Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States.

Due to uncontrolled cell proliferation and disrupted vascularization, many cancer cells in solid tumors have limited oxygen supply. The hypoxic microenvironments of tumors lead to metabolic reprogramming of cancer cells, contributing to therapy resistance and metastasis. To identify better targets for the effective removal of hypoxia-adaptive cancer cells, it is crucial to understand how cancer cells alter their metabolism in hypoxic conditions.

View Article and Find Full Text PDF

RGFP966 inhibits palmitic acid induced VSMCs phenotypic transition by targeting ATGL.

Biochim Biophys Acta Mol Cell Biol Lipids

January 2025

Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, China. Electronic address:

Background: The phenotypic switch of vascular smooth muscle cells (VSMCs) underlies the pathology of many cardiovascular diseases. Histone deacetylase 3 (HDAC3) is reported to upregulate in several cardiovascular diseases. RGFP966 is a highly selective HDAC3 inhibitor.

View Article and Find Full Text PDF

It has been well documented that cold is an enhancer of lipid metabolism in peripheral tissues, yet its effect on central nervous system lipid dynamics is underexplored. It is well recognized that cold acclimations enhance adipocyte functions, including white adipose tissue lipid lipolysis and beiging, and brown adipose tissue thermogenesis in mammals. However, it remains unclear whether and how lipid metabolism in the brain is also under the control of ambient temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!