Multi-level encryption of information in morphing hydrogels with patterned fluorescence.

Soft Matter

Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Published: March 2022

Fluorescent hydrogels have attracted tremendous attention recently in the field of information security due to the booming development of information technology. Along this line, it is highly desired to improve the security level of concealed information by the advancements of materials and encryption technologies. Here we report multi-level encryption of information in a bilayer hydrogel with shape-morphing ability and patterned fluorescence. This hydrogel is composed of a fluorescence layer containing chromophore units in the poly(acrylic acid) network and an active layer with UV-absorption agents in the poly(-isopropylacrylamide--acrylic acid) network. The former layer exhibits tunable fluorescence tailored by UV light irradiation to induce unimer-to-dimer transformation of the chromophores, facilitating the write-in of information through photolithography. The latter layer is responsive to temperature, enabling morphing of the bilayer hydrogel. Therefore, the bilayer hydrogel encoded with patterned fluorescent patterns can deform into three-dimensional configurations at room temperature to conceal the information, which is readable only after successive procedures of shape recovery at an appropriate temperature and under UV light irradiation from the right direction. The combination of morphing materials and patterned fluorescence as a new avenue to improve the encryption level of information should merit the design of other smart materials with integrated functions for specific applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2sm00083kDOI Listing

Publication Analysis

Top Keywords

patterned fluorescence
12
bilayer hydrogel
12
multi-level encryption
8
acid network
8
light irradiation
8
fluorescence
5
encryption morphing
4
morphing hydrogels
4
patterned
4
hydrogels patterned
4

Similar Publications

Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.

View Article and Find Full Text PDF

Magnetorheological (MR) fluids can be utilized in one of the fundamental operating modes of which the gradient pinch mode has been the least explored. In this unique mode non-uniform magnetic field distributions are taken advantage of to develop a so-called Venturi-like contraction in MR fluids. By adequately directing magnetic flux the material can be made solidified in the regions near the flow channel wall, thus creating a passage in the middle of the channel for the fluid to pass through.

View Article and Find Full Text PDF

Development of plantaricin RX-8 loaded pectin/4-carboxyphenylboric acid/carboxymethyl chitosan hydrogel microbead: A potential targeted oral delivery system.

Int J Biol Macromol

December 2024

School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China. Electronic address:

Bacteriocin can effectively improve the gut inflammation for their superior antibacterial activity. However, its inherent attributes, such as easily degraded and off-target effect in the gastrointestinal environment, make bacteriocins' efficient oral delivery a great challenge. Herein, a pectin/4-carboxyphenylboric acid/carboxymethyl chitosan (PEC/CPBA/CMCS) hydrogel microbead targeted oral delivery system was innovatively developed for the plantaricin RX-8 protective delivery, precisely targeted inflammatory microenvironment (IME) and sustained released plantaricin RX-8 by pH/ROS dual stimulation response.

View Article and Find Full Text PDF

Super-enhancer Activates Master Transcription Factor NR3C1 Expression and Promotes 5-FU Resistance in Gastric Cancer.

Adv Sci (Weinh)

December 2024

Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.

Poor response to 5-fluorouracil (5-FU) remains an obstacle in the treatment of gastric cancer (GC). Super enhancers (SEs) are crucial for determining tumor cell survival under drug pressure. SE landscapes related to 5-FU-resistance are mapped to GC using chromatin immunoprecipitation-sequencing (ChIP-Seq).

View Article and Find Full Text PDF

We present novel fluorescent cholesteryl probes (CNDs) with a modular design based on the solvatochromic 1,8-phthalimide scaffold. We have explored how different modules-linkers and head groups-affect the ability of these probes to integrate into lipid membranes and how they distribute intracellularly in mouse astrocytes and fibroblasts targeting lysosomes and lipid droplets. Each compound was assessed for its solvatochromic behavior in organic solvents and model membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!