Congenital anomalies of the tubular gastrointestinal tract are an important cause of morbidity not only in infants, but also in children and adults. The gastrointestinal (GI) tract, composed of all three primitive germ layers, develops early during embryogenesis. Two major steps in its development are the formation of the gut tube (giving rise to the foregut, the midgut and the hindgut), and the formation of individual organs with specialized cell types. Formation of an intact and functioning GI tract is under strict control from various molecular pathways. Disruption of any of these crucial mechanisms involved in the cell-fate decision along the dorsoventral, anteroposterior, left-right and radial axes, can lead to numerous congenital anomalies, most of which occur and present in infancy. However, they may run undetected during childhood. Therapy is surgical, which in some cases must be performed urgently, and prognosis depends on early diagnosis and suitable treatment. A precise pathologic macroscopic or microscopic diagnosis is important, not only for the immediate treatment and management of affected individuals, but also for future counselling of the affected individual and their family. This is even more true in cases of multiple anomalies or syndromic patterns. We discuss some of the more frequent or clinically important congenital anomalies of the tubular GI, including atresia's, duplications, intestinal malrotation, Meckel's diverticulum and Hirschsprung's Disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9040549 | PMC |
http://dx.doi.org/10.32074/1591-951X-553 | DOI Listing |
Mol Genet Genomic Med
January 2025
The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.
Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.
Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.
Ann Noninvasive Electrocardiol
January 2025
Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
Background: Electrocardiograms (EKGs) are routinely performed in pregnant patients with pre-existing cardiovascular disease. However, in pregnant patients with congenital heart disease (CHD), EKG changes during gestation have not been explored.
Methods: We performed a retrospective study of pregnant patients with CHD enrolled in the STORCC initiative.
Birth Defects Res
January 2025
Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA.
Background: Epidemiological studies report associations of drinking water disinfection byproducts (DBPs) with adverse health outcomes, including birth defects. Here, we used a rat model susceptible to pregnancy loss (full-litter resorption; FLR) and eye malformations (anophthalmia, microphthalmia) to test 11 DBPs, including trihalomethanes, haloacetic acids (HAAs), and nitrogen-containing DBPs (N-DBPs).
Methods: Timed-pregnant F344 rats received gavage doses of chloroform, chlorodibromomethane, iodoform, chloroacetic acid, bromoacetic acid, dibromoacetic acid (DBA), diiodoacetic acid (DIA), trichloroacetic acid (TCA), dibromonitromethane, and iodoacetonitrile on gestation days (GD) 6-10.
Birth Defects Res
January 2025
Department of Zoology, University of Calcutta, Kolkata, India.
Background: Neural tube defects (NTDs) are defined as an incomplete closure of the neural tube (NT), with a prevalence of 1.2 per 1000 live births around the world. Methylation of the maternally imprinted gene Insulin-like growth factor 2 (IGF2) is one of the epigenetic mechanisms that contribute significantly to the development of NTDs.
View Article and Find Full Text PDFClin Genet
January 2025
Prenatal Diagnosis and Fetal Medicine Department, Human Genetics and Genome Research Institute, National Research Centre (NRC), Cairo, Egypt.
SUMOylation involves covalent attachment of small ubiquitin-like modifier (SUMO) proteins to specific lysine residues on target proteins and regulates various aspects of their function. Sentrin-specific proteases (SENPs) are key players in both the conjugation reaction of SUMO proteins to their targets and the subsequent deconjugation of SUMO-conjugated substrates. Here, we provide the first comprehensive prenatal description of a lethal syndrome linked to a novel homozygous stop-gain variant in SENP7 c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!