Manipulation and precise delivery of optical energies in the regions of interest within specimens require different strategies. Hence, proper control of input beam parameters is a prerequisite. One of the prominent methods is metasurface optics, capable of crafting properties of light at nanoscales. Here, the generation of an abrupt autofocusing (AAF) beam by a nanophotonic metasurface for biomedical applications is demonstrated. Fluorescence guided laser microprofiling of mouse cardiac samples is experimentally investigated, using the AAF beam to deliver optical energy selectively to specific locations. In addition, photocoagulation of ex vivo swine skin tissue is performed and observed through optical coherence tomography. The results show great potentials for integrating metasurface optics to realize miniature laser surgery instruments for wide applications in biomedicine.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202101228DOI Listing

Publication Analysis

Top Keywords

abrupt autofocusing
8
biomedical applications
8
metasurface optics
8
aaf beam
8
metasurface-based abrupt
4
beam
4
autofocusing beam
4
beam biomedical
4
applications manipulation
4
manipulation precise
4

Similar Publications

We demonstrate arbitrarily shaped Mathieu bottle beams (MBBs) based on geometric factor design. By elaborately selecting elliptical trajectory parameters and corresponding orders, the MBBs can be tailored to diverse longitudinal and transversal shapes simultaneously. The proposed method breaks through the limitation that the components of conventional bottle beams can only self-accelerate along paraxial paths with fixed shapes.

View Article and Find Full Text PDF

A type of circular Airyprime function of complex-variable Gaussian vortex (AFCGV) wave packets in a strongly nonlocal nonlinear medium is introduced numerically, combining the properties of helicity states and abrupt autofocusing. We investigate the effects of the chirp factor, distribution parameter, and decay factor on the AFCGV wave packets in the strongly nonlocal nonlinear medium. Interestingly, by adjusting the distribution parameter, the AFCGV wave packets can exhibit stable rotational motions in various shapes, such as symmetric lobes and doughnuts.

View Article and Find Full Text PDF

Airy beams have become an important beam shape for structured light beams because of their interesting self-accelerating and parabolic propagation properties. Many variants of Airy beams have been proposed, among which the Airy beam with cylindrical symmetry [also known as the circular Airy beam or abrupt autofocusing (AAF) beam] is particularly peculiar and has attracted special attention due to its shape transformation during propagation. Much effort has been devoted to understanding the properties of the AAF beam.

View Article and Find Full Text PDF

Volume holographic elements are excellent at shaping high-quality spatial and spectral modes. Many microscopy and laser-tissue interaction applications require precise delivery of optical energy at specific sites without affecting the peripheral regions. Owing to the property of very high energy contrast between the input and the focal plane, abrupt autofocusing (AAF) beams can be the right candidate for laser-tissue interaction.

View Article and Find Full Text PDF

Recently, a new type of abruptly autofocusing beam called circular Airyprime beam (CAPB) has been reported. Its abrupt autofocusing ability has been proven to be approximately seven times that of a circular Airy beam under the same conditions. Further improving the abrupt autofocusing ability of the CAPB without changing the beam parameters is a concern in optical research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!