AI Article Synopsis

  • The study explores the connection between childhood exposure to environmental greenness and the risk of developing food allergies, particularly focusing on peanut and egg allergies in infants.
  • Data collected from over 5,000 infants in Melbourne showed that higher levels of greenness were linked to an increased risk of peanut allergy, especially among those from lower socioeconomic backgrounds and in areas with high air pollution.
  • The findings highlight that environmental factors like greenery can influence food allergy development, suggesting a complex interaction between greenness, socioeconomic status, and pollution levels.

Article Abstract

Background: While exposure to environmental greenness in childhood has shown mixed associations with the development of allergic disease, the relationship with food allergy has not been explored. We investigated the association between exposure to environmental greenness and challenge-confirmed food allergy in a large population-based cohort.

Methods: The HealthNuts study recruited 5276 12-month-old infants in Melbourne, Australia, who underwent skin prick testing to peanut, egg, and sesame; infants with a detectable wheal underwent food challenges to determine food allergy status. Environmental greenness was estimated using the normalized difference vegetation index (NDVI) for five buffer zones around the infant's home address: at the home, 100 m, 500 m, 800 m, and 1600 m radial distances. Environmental greenness was categorized into 3 tertiles and mixed effects logistic regression models quantified the association between greenness and the risk of food allergy, adjusting for confounding and accounting for clustering at the neighborhood level.

Results: NDVI data were available for n = 5097. For most buffer zones, medium and high greenness, compared to low greenness, was associated with an increased risk of peanut allergy (eg, 100 m tertile 2 aOR 1.89 95% CI 1.22-2.95, tertile 3 aOR 1.78 95% CI 1.13-2.82). For egg allergy, the effect sizes were smaller (100 m tertile 2 aOR 1.52 95% CI 1.16-1.97, tertile 3 aOR 1.38 95% CI 1.05-1.82). Socioeconomic status (SES) modified the association between greenness and peanut allergy, but not egg allergy; associations were apparent in the low SES group but not in the high SES group (p for interaction 0.08 at 100 m). Air pollution (PM2.5) also modified the associations between environmental greenness and food allergy, with associations present in high air pollution areas but not low (p for interaction at 100 m 0.05 for peanut and 0.06 for egg allergy.) CONCLUSION: Increased exposure to environmental greenness in the first year of life was associated with an increased risk of food allergy. Increased greenness may correlate with higher pollen levels which may trigger innate immune responses skewing the immune system to the Th2-dependent allergic phenotype; additionally, some pollen and food allergens are cross-reactive. Given the mixed data on greenness and other allergies, the relationship appears complex and may also be influenced by confounding variables outside those that were measured in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pai.13749DOI Listing

Publication Analysis

Top Keywords

environmental greenness
28
food allergy
28
tertile aor
16
greenness
13
risk food
12
allergy
12
exposure environmental
12
egg allergy
12
food
9
greenness risk
8

Similar Publications

Air pollution exposure is associated with gene expression in children.

Environ Epigenet

December 2024

Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo 0317, Norway.

Environmental exposures, including air pollutants and lack of natural spaces, are associated with suboptimal health outcomes in children. We aimed to study the associations between environmental exposures and gene expression in children. Associations of exposure to particulate matter (PM) with diameter <2.

View Article and Find Full Text PDF

This work presents the PULPO (ython-based ser-defined ifecycle roduct ptimization) framework, developed to efficiently integrate life cycle inventory (LCI) models into life cycle product optimization. Life cycle optimization (LCO), which has found interest in both the process systems engineering and life cycle assessment (LCA) communities, leverages LCA data to go beyond simple assessments of a limited number of alternatives and identify the best possible product systems configuration subject to a manifold of choices, constraints, and objectives. However, typically, aggregated inventories are used to build the optimization problems.

View Article and Find Full Text PDF

Plastic additives are as essential as polymers to the production and performance of plastic materials. Additive content can vary in composition and functionality depending on the product, producer, application, and production method. Such variation may be a barrier to achieving high-quality recycling and planning for plastic circular economy futures.

View Article and Find Full Text PDF

As the European Union transitions to the circular use of plastics, robust life cycle assessments are crucial in understanding and preparing for this new economy. Additives are essential to the production of all plastics but were reported as missing from life cycle assessments (LCAs) of plastic materials a decade ago. This study expands upon previous research by investigating if plastic additive impacts are now included in LCAs of recycled plastic materials or if they are still absent.

View Article and Find Full Text PDF

Graphdiyne (GDY) alone as a photocatalyst is unsatisfactory because of its low crystallinity, limited regulation of the band gap, weak photogenerated charge separation, , and heterojunctioning with other materials is necessary to activate the photocatalytic activity of GDY. Through elaborate design, a diacetylene-rich linker (S2) was prepared and employed to construct a crystalline and structurally well-defined GDY-like covalent organic framework (COF, namely S2-TP COF) which merges the merits of both COF and GDY to boost the photocatalytic hydrogen evolution reaction (HER). By theoretical prediction on the donor-acceptor (D-A) pair, two other monoacetylene-bridged COFs (S1-TP COF and S3-TP COF) were prepared for comparison.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!