Background: Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths. The development of therapies targeting molecular alterations has significantly improved the treatment of NSCLC patients. To identify these targets, tumor phenotyping is required, with tissue biopsies and molecular pathology being the gold standard. Some patients do not respond to targeted therapies and many patients suffer from tumor recurrence, which can in part be explained by tumor heterogeneity. This points out the need for new biomarkers allowing for better tumor phenotyping and monitoring during treatment to assess patient outcome.
Method: The contents of this review are based on a literature search conducted using the PubMed database in March 2021 and the authors' experience.
Results And Conclusion: The use of radiomics and artificial intelligence-based approaches allows for the identification of imaging biomarkers in NSCLC patients for tumor phenotyping. Several studies show promising results for models predicting molecular alterations, with the best results being achieved by combining structural and functional imaging. Radiomics could help solve the pressing clinical need for assessing and predicting therapy response. To reach this goal, advanced tumor phenotyping, considering tumor heterogeneity, is required. This could be achieved by integrating structural and functional imaging biomarkers with clinical data sources, such as liquid biopsy results. However, to allow for radiomics-based approaches to be introduced into clinical practice, further standardization using large, multi-center datasets is required.
Key Points: · Some NSCLC patients do not benefit from targeted therapies, and many patients suffer from tumor recurrence, pointing out the need for new biomarkers allowing for better tumor phenotyping and monitoring during treatment.. · The use of radiomics-based approaches allows for the identification of imaging biomarkers in NSCLC patients for tumor phenotyping.. · A multi-omics approach integrating not only structural and functional imaging biomarkers but also clinical data sources, such as liquid biopsy results, could further enhance the prediction and assessment of therapy response..
Citation Format: · Kroschke J, von Stackelberg O, Heußel CP et al. Imaging Biomarkers in Thoracic Oncology: Current Advances in the Use of Radiomics in Lung Cancer Patients and its Potential Use for Therapy Response Prediction and Monitoring. Fortschr Röntgenstr 2022; 194: 720 - 727.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/a-1729-1516 | DOI Listing |
MAGMA
January 2025
Aix Marseille Univ, CNRS, CRMBM, Marseille, France.
Objective: Segmentation of individual thigh muscles in MRI images is essential for monitoring neuromuscular diseases and quantifying relevant biomarkers such as fat fraction (FF). Deep learning approaches such as U-Net have demonstrated effectiveness in this field. However, the impact of reducing neural network complexity remains unexplored in the FF quantification in individual muscles.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
Purpose: Since fibroblast activation protein (FAP), one predominant biomarker of cancer associated fibroblasts (CAFs), is highly expressed in the tumor stroma of various epidermal-derived cancers, targeting FAP for tumor diagnosis and treatment has shown substantial potentials in both preclinical and clinical studies. However, in preclinical settings, tumor-bearing mice exhibit relatively low absolute FAP expression levels, leading to challenges in acquiring high-quality PET images using radiolabeled FAP ligands (FAPIs) with low molar activity, because of which a saturation effect in imaging is prone to happen. Moreover, how exactly the molar dose of FAPI administered to a mouse influences the targeted PET imaging and radiotherapy remains unclear now.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China.
As multiple imaging modalities cannot reliably diagnose cardiac tumors, the molecular approach offers alternative ways to detect rare ones. One such molecular approach is CRISPR-based diagnostics (CRISPR-Dx). CRISPR-Dx enables visual readout, portable diagnostics, and rapid and multiplex detection of nucleic acids such as microRNA (miRNA).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
HClO is considered a potential contributing factor and biomarker of inflammatory bowel disease (IBD). Accurate monitoring of lysosomal HClO is important for further developing specific diagnostic and therapeutic schedules for IBD. However, only rare types of fluorescent probes have been reported for detecting HClO in IBD so far.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Nuclear Medicine, University of Medicine and Pharmacy Carol Davila Bucharest Romania, 020021 Bucharest, Romania.
Hepatic hydrothorax (HH) is a severe cirrhosis complication requiring early diagnosis and appropriate management. This study aimed to assess the impact of HH on the disease severity and mortality of cirrhotic patients and compare their clinical and biological profiles with those of patients without HH. This retrospective study involved 155 patients diagnosed with cirrhosis, of whom 31 had HH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!