Pre-eclampsia (PE), a pregnancy complication, affects 3-5% of all pregnancies worldwide and is the main cause of maternal and perinatal morbidity. However, there is no drug which can clearly slow this disease progression. Epigallocatechin gallate (EGCG), a natural compound extracted from green tea, has been found to enhance the treatment efficacy of oral nifedipine against pregnancy-induced severe PE. This study aims to clarify the potential targets and pharmacological mechanisms of EGCG in treatment of PE. We used Traditional Chinese Medicine Systems Pharmacology database and Gene Cards database to obtain 179 putative target proteins of EGCG, 550 PE-related hub genes and 39 intersecting targets between EGCG and PE. By using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, we got the gene entries and enrichment pathways closely related to the intersecting targets. The top 10 enrichment pathways were pathway in cancer, proteoglycans in cancer, HIF-1 signaling pathway, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, bladder cancer, hepatitis B, IL-17 signaling pathway, toxoplasmosis, PI3K-Akt signaling pathway. Furthermore, compound-target-pathway (CTP) and protein-protein interaction (PPI) network analysis were employed to explore the interaction of the top twelve targets for EGCG in treating PE. Molecular docking analysis showed combinations between these targets and EGCG, and the interaction between EGCG and the targets IL-6 and EGFR was confirmed by using molecular dynamic simulation. In conclusion, these findings hint the underlying mechanism of EGCG in the treatment of PE and point out directions in further studies on PE.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43032-022-00894-2DOI Listing

Publication Analysis

Top Keywords

signaling pathway
20
targets egcg
12
epigallocatechin gallate
8
molecular docking
8
egcg
8
egcg treatment
8
intersecting targets
8
enrichment pathways
8
pathway
7
targets
6

Similar Publications

Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).

View Article and Find Full Text PDF

Insights of cellular and molecular changes in sugarcane response to oxidative signaling.

BMC Plant Biol

January 2025

Bioinformatics Multidisciplinary Environment, IMD, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil.

Significant changes in the proteome highlight essential metabolic adaptations for development and oxidative signaling induced by the treatment of young sugarcane plants with hydrogen peroxide. These adaptations suggest that hydrogen peroxide acts not only as a stressor but primarily as a signaling molecule, triggering specific metabolic pathways that regulate growth and plant resilience. Sugarcane is a crucial crop for sugar and ethanol production, often influenced by environmental signals.

View Article and Find Full Text PDF

Background: Muscle and adipose tissue are the most critical indicators of beef quality, and their development and function are regulated by noncoding RNAs (ncRNAs). However, the differential regulatory mechanisms of ncRNAs in muscle and adipose tissue remain unclear.

Results: In this study, 2,343 differentially expressed mRNAs (DEMs), 235 differentially expressed lncRNAs (DELs), 95 differentially expressed circRNAs (DECs) and 54 differentially expressed miRNAs (DEmiRs) were identified in longissimus dorsi muscle (LD), subcutaneous fat (SF) and perirenal fat (VF) in Qinchuan beef cattle.

View Article and Find Full Text PDF

Community-acquired pneumonia (CAP) has a significant impact on public health, especially in light of the recent SARS-CoV-2 pandemic. To enhance disease characterization and improve understanding of the underlying mechanisms, a comprehensive analysis of the plasma lipidome, metabolome and proteome was conducted in patients with viral and bacterial CAP infections, including those induced by SARS-CoV-2. Lipidomic, metabolomic and proteomic profiling were conducted on plasma samples of 69 patients suffering either from viral or bacterial CAP.

View Article and Find Full Text PDF

The emergence of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has improved the prognosis for lung cancer patients with EGFR-driven mutations. However, acquired resistance to EGFR-TKIs poses a significant challenge to the treatment. Overcoming the resistance has primarily focused on developing next-generation targeted therapies based on the molecular mechanisms of resistance or inhibiting the activation of bypass pathways to suppress or reverse the resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!