he incidence of obesity and type 2 diabetes mellitus (T2DM) is increasing year by year and shows a trend towards younger age groups worldwide. It has become a disease that endangers the health of individuals all over the world. Among numerous weight loss surgeries, sleeve gastrectomy (SG) has become one of the most common surgical strategies for the treatment of T2DM. However, SG‑mediated alterations to the molecular mechanism of metabolism require further investigation. Thus, reverse transcription‑quantitative PCR was used to detect the expression levels of long non‑coding (lnc)RNA taurine‑upregulated gene 1 (TUG1), Sirtuin 1 (SIRT1), AMP‑activated protein kinase (AMPK) and uncoupling protein 2 (UCP2) in the serum of T2DM patients, as well as in HIEC‑6 and SW480 cells following treatment with high glucose and high fat (HGHF). Protein expression was detected by western blotting. Cell Counting Kit‑8 assays were performed to analyze cell viability, and flow cytometry and a TUNEL assay was performed to evaluate cell apoptosis. The secretion of ILs in the culture medium was detected by conducting ELISAs. The results showed that lncRNA TUG1 and UCP2 expression was upregulated, SIRT1 and AMPK expression levels were decreased by SG. Under HGHF conditions, HIEC‑6 and SW480 cell viability was inhibited, apoptosis was promoted, TUG1 expression was downregulated, and SIRT1 and AMPK expression levels were upregulated. The secretory levels of IL‑1β, IL‑6 and IL‑8 were increased, whereas the secretion of IL‑10 was decreased under HGHF conditions. lncRNA TUG1 overexpression significantly reversed the effects of HGHF on cell viability, apoptosis and SIRT1, AMPK, UCP2 and Bcl‑2 expression levels. Together, the findings of the present study demonstrated that lncRNA TUG1 alleviated the damage induced by HGHF in intestinal epithelial cells by downregulating SIRT1 and AMPK expression, and upregulating UCP2 expression. Thus, the lncRNA TUG1/AMPK/SIRT1/UCP2 axis may serve an important role in the treatment of T2DM.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2022.12655DOI Listing

Publication Analysis

Top Keywords

lncrna tug1
16
expression levels
16
sirt1 ampk
16
cell viability
12
ampk expression
12
expression
9
intestinal epithelial
8
epithelial cells
8
damage induced
8
high glucose
8

Similar Publications

Identification of IGF2BP2 and long non-coding RNA TUG1 for the prognosis and tumour microenvironment in head and neck squamous cell carcinoma.

Acta Otorhinolaryngol Ital

January 2025

Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

Objective: This study aimed to investigate the role of m6A-related long non-coding RNAs (lncRNAs) in the prognosis and tumour microenvironment of head and neck squamous cell carcinoma (HNSCC).

Methods: 497 samples from The Cancer Genome Atlas were analysed to identify m6A-related lncRNAs via correlation models. Tripartite regression models, Kaplan-Meier analysis and nomograms were then utilised to assess the prognostic significance of these lncRNAs.

View Article and Find Full Text PDF

Purpose: This study aimed to explore the relationship between m6A demethylase ALKBH5 and long noncoding RNA TUG1 (TUG1), as well as their effects on proliferation, migration, and angiogenesis in gastric cancer (GC) cells.

Methods: The Cancer Genome Atlas (TCGA) database was utilized to analyze the relative expression levels of ALKBH5, TUG1, and vascular endothelial growth factor A (VEGFA). Survival analyses of TUG1, ALKBH5, and VEGFA were performed using the Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan-Meier databases.

View Article and Find Full Text PDF

Renal interstitial fibrosis (RIF) is a common pathway in chronic kidney disease (CKD) that ultimately leads to end-stage renal failure, worsening both glomerulosclerosis and interstitial fibrosis. Ten percent of the adult population in the world suffers from CKD, and as the ageing population continues to rise, it is increasingly regarded as a global threat-a silent epidemic. CKD has been discovered to be closely associated with both long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), while the precise molecular processes behind this relationship are still unclear.

View Article and Find Full Text PDF

Ischemic stroke is a serious cerebrovascular disease, highlighting the urgent need for reliable biomarkers for early diagnosis. Recent reports suggest that long non-coding RNAs (lncRNAs) can be potential biomarkers for ischemic stroke. Therefore, our study seeks to investigate the potential diagnostic value of lncRNAs for ischemic stroke by analyzing existing research.

View Article and Find Full Text PDF

Microglia, the central nervous system's primary immune cells, play a key role in the progression of cerebral ischemic stroke, particularly through their involvement in pyroptosis. The long non-coding RNA taurine up-regulated gene 1 (Tug1) is elevated during ischemic stroke and is critical in driving post-stroke neuroinflammation. However, the underlying molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!