Previous studies have shown that abnormal metabolic reprogramming in CD4+ T cells could explain the occurrence of several autoimmune disorders, including Sjogren's syndrome (SS). However, therapeutic targets of the abnormal metabolism of CD4+ T cells remain to be explored. Here, we report that glutaminase 1 (Gls1), a pivotal factor in glutaminolysis, might be involved in the pathogenesis of SS. The expression of Gls1 was upregulated in infiltrated labial CD4+ T cells and circulating CD4+ T cells of SS patients. Inhibiting Gls1 with BPTES significantly abolished the proliferation rate, as indicated by EdU, CFSE, and Western blot analyses. Additionally, BPTES downregulated the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) values of activated CD4+ T cells from SS mice. , we injected different doses of BPTES into SS-like NOD/Ltj mice and found that 10 mg/kg BPTES significantly restored the salivary flow rate. Histological and qRT-PCR analyses showed that this concentration of BPTES attenuated lymphocytic infiltration and the numbers of PCNA-positive cells and CD4+ T cells. The proportions of IFN-producing cells and IL-17A-producing cells and the expression of several proinflammatory cytokines, including IFN and IL-17A, were also affected in the salivary glands of SS-like mice. Cytokine production in circulating serum was analyzed and showed that BPTES downregulated the effector functions of Th17 cells and Th1 cells. Collectively, these results indicate a positive relationship between Gls1 and SS development. Pharmacological inhibition of Gls1 with BPTES could normalize the effector functions of CD4+ T cells and effectively attenuate the symptoms of SS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8863479 | PMC |
http://dx.doi.org/10.1155/2022/3210200 | DOI Listing |
JCI Insight
January 2025
CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, University of Bordeaux, Bordeaux, France.
CD8+ T cells are critical for immune protection against severe COVID-19 during acute infection with SARS-CoV-2. However, the induction of antiviral CD8+ T cell responses varies substantially among infected people, and a better understanding of the mechanisms that underlie such immune heterogeneity is required for pandemic preparedness and risk stratification. In this study, we analyzed SARS-CoV-2-specific CD4+ and CD8+ T cell responses in relation to age, clinical status, and inflammation among patients infected primarily during the initial wave of the pandemic in France or Japan.
View Article and Find Full Text PDFImmunohorizons
January 2025
Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.
CD73 is ubiquitously expressed and regulates critical functions across multiple organ systems. The sequential actions of CD39 and CD73 accomplish the conversion of adenosine triphosphate to adenosine and shift the adenosine triphosphate-driven proinflammatory immune cell milieu toward an anti-inflammatory state. This immunological switch is a major mechanism by which regulatory T (Treg) cells control inflammation.
View Article and Find Full Text PDFImmunohorizons
January 2025
Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States.
The differentiation and functionality of virus-specific T cells during acute viral infections are crucial for establishing long-term protective immunity. While numerous molecular regulators impacting T cell responses have been uncovered, the role of cellular prion proteins (PrPc) remains underexplored. Here, we investigated the impact of PrPc deficiency on the differentiation and function of virus-specific T cells using the lymphocytic choriomeningitis virus (LCMV) Armstrong acute infection model.
View Article and Find Full Text PDFImmunohorizons
January 2025
Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.
Dysregulated differentiation of naïve CD4+ T cells into T helper 17 (Th17) cells is likely a key factor predisposing to many autoimmune diseases. Therefore, better understanding how Th17 differentiation is regulated is essential to identify novel therapeutic targets and strategies to identify individuals at high risk of developing autoimmunity. Here, we extend our prior work using chemical inhibitors to provide mechanistic insight into a novel regulator of Th17 differentiation, the kinase dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A).
View Article and Find Full Text PDFJCI Insight
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China.
Autoimmune uveitis (AU) is a sight-threatening ocular autoimmune disorder that often manifests as retinal vasculitis. Increased neutrophil infiltration around retinal vessels has been reported during the progression of AU, while how they function is not fully recognized. Neutrophil extracellular traps (NETs), produced by activated neutrophils, have been suggested to be detrimental in autoimmune diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!