Deoxyribonucleic acid (DNA) methylation is an important epigenetic mark involved in diverse biological processes. Here, we report the critical function of tomato () () in plant growth and development, especially in leaf interveinal chlorosis and senescence. Using a hairpin RNA-mediated RNA interference (RNAi), we generated -RNAi lines and observed pleiotropic developmental defects including small and interveinal chlorosis leaves. Combined analyses of whole genome bisulfite sequence (WGBS) and RNA-seq revealed that silencing of caused alterations in both methylation levels and transcript levels of 289 genes, which are involved in chlorophyll synthesis, photosynthesis, and starch degradation. Furthermore, the photosynthetic capacity decreased in -RNAi lines, consistent with the reduced chlorophyll content and repression of genes involved in chlorophyll biosynthesis, photosystem, and photosynthesis. In contrast, starch granules were highly accumulated in chloroplasts of -RNAi lines and associated with lowered expression of genes in the starch degradation pathway. In addition, was activated by aging- and dark-induced senescence. Collectively, these results demonstrate that acts as an epi-regulator to modulate the expression of genes related to starch and chlorophyll metabolism, thereby affecting leaf chlorosis and senescence in tomatoes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8860812 | PMC |
http://dx.doi.org/10.3389/fpls.2022.836015 | DOI Listing |
Int J Biol Macromol
December 2024
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China. Electronic address:
The three-amino-acid-loop-extension (TALE) homeodomain transcription factor family, including the KNOX and BELL subfamilies, is one of the largest gene families in plants. This family encodes plant-specific transcription factors that play critical roles in regulating plant growth, development, and stress responses. However, their interaction network, as well as resistant functional mechanism in is rarely reported.
View Article and Find Full Text PDFDev Biol
December 2024
Program in Fundamental Neuroscience, Department of Biology, University of Virginia, Charlottesville, VA 22904, USA. Electronic address:
The ability to induce cell death in a controlled stereotypic manner has led to the discovery of evolutionary conserved molecules and signaling pathways necessary for tissue growth, repair, and regeneration. Here we report the development of a new method to genetically induce cell death in a controlled stereotypic manner in Drosophila. This method has advantages over other current methods and relies on expression of the E.
View Article and Find Full Text PDFPest Manag Sci
December 2024
Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
Background: Intentionally impairing the fecundity of mass-reared insects has important utility in controlling pest species. Typically, sterilized individuals are competed against wild counterparts, reducing pest population size. A novel consideration is creating biocontrol agents with lower reproductive capacity that are less likely to establish permanently or admix with wild populations, which are both emerging as legal barriers.
View Article and Find Full Text PDFPlant Physiol
December 2024
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
Plant cell walls are complex and dynamic cellular structures critical for plant growth, development, physiology, and adaptation. Cellulose is one of the most important components of the cell wall. However, how cellulose microfibrils deposit and assemble into crystalline cellulose remains elusive.
View Article and Find Full Text PDFCarcinogenesis
December 2024
Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
Although genome-wide association studies (GWASs) have identified dozens of loci associated with colorectal cancer (CRC) susceptibility, the causal genes or risk variants within these loci and their biological functions often remain elusive. Recently, the genomic locus 12p13.32, with the tag SNP rs10774214, was identified as a crucial CRC risk locus in Asian populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!