Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A liquid-gas foam, here called bubble array, is a ubiquitous phenomenon widely observed in daily lives, food, pharmaceutical and cosmetic products, and even bio- and nano-technologies. This intriguing phenomenon has been often studied in a well-controlled environment in laboratories, computations, or analytical models. Still, real-world bubble undergoes complex nonlinear transitions from wet to dry conditions, which are hard to describe by unified rules as a whole. Here, we show that a few early-phase snapshots of bubble array can be learned by a glass-box physics rule learner (GPRL) leading to prediction rules of future bubble array. Unlike the black-box machine learning approach, the glass-box approach seeks to unravel expressive rules of the phenomenon that can evolve. Without known principles, GPRL identifies plausible rules of bubble prediction with an elongated bubble array data that transitions from wet to dry states. Then, the best-so-far GPRL-identified rule is applied to an independent circular bubble array, demonstrating the potential generality of the rule. We explain how GPRL uses the spatio-temporal convolved information of early bubbles to mimic the scientist's perception of bubble sides, shapes, and inter-bubble influences. This research will help combine foam physics and machine learning to better understand and control bubbles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8873482 | PMC |
http://dx.doi.org/10.1038/s41598-022-07170-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!