Luminescent inorganic lead halide perovskite nanoparticles lack stability in aqueous solutions, limiting their application to optical sensors. Here, hybrid CsPbBr-loaded MIP nanogels were developed with enhanced stability in aqueous media. Multifunctional MIP nanogels with antioxidant function and hydrophobic cavities were synthesized from HEMA derivatives in the presence of roxithromycin as a template. The CsPbBr nanoparticles were loaded into pre-synthesized MIP nanogels via in-situ synthesis with a size distribution of 200 nm. The developed CsPbBr-nanogel exhibits excellent stability to air/moisture and enhanced stability toward an aqueous solvent. The developed CsPbBr-loaded MIP nanogels showed a selective and sensitive detection of ROX with a limit of detection calculated to be 1.7 × 10 μg/mL (20.6 pM). The developed CsPbBr-loaded MIP antioxidant-nanogels were evaluated on practical application for the quantitative determination of ROX antibiotic in animal-derived food products with excellent analytical performance. The detection of ROX in animal-derived food products showed good recovery results, making them an ideal candidate for sensing ROX.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8873197PMC
http://dx.doi.org/10.1038/s41598-022-07030-9DOI Listing

Publication Analysis

Top Keywords

mip nanogels
16
animal-derived food
12
food products
12
stability aqueous
12
cspbbr-loaded mip
12
nanogels antioxidant
8
enhanced stability
8
developed cspbbr-loaded
8
detection rox
8
nanogels
5

Similar Publications

PSMA-Targeting Imprinted Nanogels for Prostate Tumor Localization and Imaging.

Adv Healthc Mater

December 2024

State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.

Prostate-specific membrane antigen (PSMA) is overexpressed in prostate cancer cells and tumor vasculature, making it an important biomarker. However, conventional PSMA-targeting agents like antibodies and small molecules have limitations. Antibodies exhibit instability and complex production, while small molecules show lower specificity and higher toxicity.

View Article and Find Full Text PDF

Quantifying glycated albumin (GA) levels in the blood is crucial for diagnosing diabetes because they strongly correlate with blood glucose concentration. In this study, a biotic/abiotic sandwich assay was developed for the facile, rapid, and susceptible detection of human serum albumin (HSA) and GA. The proposed sandwich detection system was assembled using a combination of two synthetic polymer receptors and natural antibodies.

View Article and Find Full Text PDF

We describe a facile method to prepare water-compatible molecularly imprinted polymer nanogels (MIP NGs) as synthetic antibodies against target glycans. Three different phenylboronic acid (PBA) derivatives were explored as monomers for the synthesis of MIP NGs targeting either α2,6- or α2,3-sialyllactose, taken as oversimplified models of cancer-related sT and sTn antigens. Starting from commercially available 3-acrylamidophenylboronic acid, also its 2-substituted isomer and the 5-acrylamido-2-hydroxymethyl cyclic PBA monoester derivative were initially evaluated by NMR studies.

View Article and Find Full Text PDF

In this work, an innovative and accurate affinity capillary electrophoresis (ACE) method was set up to monitor the complexation of aqueous MIP nanogels (NGs) with model cancer-related antigens. Using α2,6'- and α2,3'-sialyllactose as oversimplified cancer biomarker-mimicking templates, NGs were synthesized and characterized in terms of size, polydispersity, and overall charge. A stability study was also carried out in order to select the best storage conditions and to ensure product quality.

View Article and Find Full Text PDF

Novel molecularly imprinted nanogel modified microfluidic paper-based SERS substrate for simultaneous detection of bisphenol A and bisphenol S traces in plastics.

J Hazard Mater

January 2024

Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea; Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent 100125, Uzbekistan. Electronic address:

Paper-based surface-enhanced Raman scattering (SERS) optical nanoprobes provide ultrasensitive analyte detection; however, they lack selectivity, making them difficult to use in real-world sample analysis without a pretreatment process. This work describes the design of a microfluidic paper-based SERS substrate based on molecularly imprinted nanogels decorated with silver nanoparticles to simultaneously detect bisphenol A (BPA) and bisphenol S (BPS) traces in plastic toys and receipts. The synthesized nanogels have two characteristics that boost SERS performance: molecularly imprinted cavities that allow for selective adsorption and a wrinkled surface that creates uniformly distributed hot spots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!