Exploration and utilization of maize male sterility resources.

Yi Chuan

Key Laboratory of Biology and Genetics Improvement of Maize in Southwest Region, Ministry of Agriculture/National Key Laboratory for Gene Resources Exploitation and Utilization of Crops in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.

Published: February 2022

Male sterility refers to the defective development of male reproductive organs, which led to plants incapable of producing normal and functional pollens. Maize (Zea mays L.) is one of the most important food crops, as well as one of the earliest crops to utilize heterosis in breeding. Single cross hybrid has been the main type of maize heterosis utilization for a long time. The planting area of maize hybrid in China has been stable at about 620 million mu. More than one billion kilograms of commercial hybrid seeds are needed each year, and the annual seed production area has been stable at about 2.5 million mu in recent years. So far, manual emasculation has been the major way of maize hybrid seed production in China, which is laborious and time consuming. Generally, spatial isolation is necessary for maize hybrid seed production, this requirement results in only some regions in the country suitable for maize hybrid seed production. Manual emasculation requires seasonal demand of labors. At present, with the urbanization of a large number of rural laborers, the seed production regions experience a serious labor shortage. Accordingly, the cost of seed production increases with the rising of land rent and labor costs. In addition, it is difficult to guarantee the seed purity with manual or mechanical emasculation for hybrid seed production. However, incorporating male sterility into maize hybrid seed production could reduce its cost and ensure hybrid seed purity. It can also avoid the difficulties of manual or mechanical emasculation in field operation under extreme weather conditions. Therefore, it is the inevitable trend of development in the maize seed industry. In this review, we summarize the exploitation and creation of maize cytoplasmic male sterility (CMS), maize genic male sterility (GMS) resources in China, and the developing process from natural discovery to targeted creation of male sterility resources in plants, and the research progress of maize male sterility. We then analyze the application status and existing problems of maize male sterility, based on the development trend of maize seed industry, as well as the research and application status of male sterility in China. We also identify seven aspects that need to be further strengthen, thereby providing the reference for the creation, research and utilization of maize male sterility in the future.

Download full-text PDF

Source
http://dx.doi.org/10.16288/j.yczz.21-327DOI Listing

Publication Analysis

Top Keywords

male sterility
40
seed production
32
hybrid seed
24
maize hybrid
20
maize male
16
maize
15
seed
12
male
11
sterility
10
hybrid
9

Similar Publications

Background: Herpes simplex virus type 2 (HSV-2) is a common sexually transmitted infection (STI) primarily acquired through sexual contact. In 2000, the World Health Organization (WHO) for the first time reported the association of STIs with male infertility. Infertility is described as the inability to achieve a clinical pregnancy after engaging in regular, unprotected sexual intercourse for a year or more.

View Article and Find Full Text PDF

Novel variants of FSIP2 and SPEF2 cause varying degrees of spermatozoa damage in MMAF patients and favorable ART outcomes.

J Assist Reprod Genet

January 2025

NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.

Purpose: This study identified novel variants of the FSIP2 and SPEF2 genes in multiple morphological abnormalities of the sperm flagella (MMAF) patients and to investigate the potential effect of variations on male infertility and assisted reproductive outcomes.

Methods: Whole-exome sequencing was performed in 106 Chinese MMAF patients. The discovered variants were evaluated in silico and confirmed by Sanger sequencing.

View Article and Find Full Text PDF

Effect of in vitro exposure of first-line antiretrovirals on healthy human spermatozoa on kinematics and motility.

Int Urol Nephrol

January 2025

Department of Urology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa.

Purpose: Contemporary antiretroviral (ARV) medications are used by millions of men for HIV treatment worldwide. Limited data exist on their direct effect on sperm motility. This pilot study hypothesizes that in vitro exposure to ARVs will reduce sperm kinematic and motility parameter values.

View Article and Find Full Text PDF

Spermatogenesis is one of the most complex processes of cell differentiation and its failure is a major cause of male infertility. Therefore, a proper model that recapitulates spermatogenesis in vitro has been long sought out for basic and clinical research. Testis organ culture using the gas-liquid interphase method has been shown to support spermatogenesis in mice and rats.

View Article and Find Full Text PDF

Research Question: Does a short co-incubation of gametes in conventional IVF affect post-insemination outcomes and embryo morphokinetics?

Design: Sibling oocyte randomized pilot study conducted between December 2020 and March 2023. Eligible couples (n = 55) were women aged 18-43 years with BMI 35 km/m or lower and male normal semen parameters. Cumulus oocyte complexes (COC) (six to 12) were randomized in a 1:1:2 proportion in long (16-18 h) or short (2 h) co-incubation IVF exposure and ICSI, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!