A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultralow-frequency ultranarrow-bandwidth coherent terahertz imaging for nondestructive testing of mortar material. | LitMetric

Nondestructive testing of concrete materials is essential in civil engineering to maintain social infrastructure such as buildings or bridges. In this study, we constructed an ultralow-frequency, ultranarrow-bandwidth, coherent terahertz (THz) imaging system based on THz time-domain spectroscopy (THz-TDS). Based on its ultralow-frequency-localized THz wave and coherent detection, the present system achieved a wide dynamic range of THz power over 100 dB at 0.046 THz, which is appropriate to measure the mortar material. The achieved dynamic range of the THz power was 59 dB larger than that of a commercialized THz-TDS system and 49 dB larger than that of an ultralow-frequency noncoherent THz imaging system equipped with a high-power electric THz source. Ultimately, the proposed system could visualize the inner structure of a mortar sample with a thickness of 10 mm, and the present system can investigate a mortar sample with a thickness of over 130 mm. The proposed method is an attractive tool for non-destructive testing of thick concrete structures characterized by non-invasiveness and non-contact remoteness.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.449092DOI Listing

Publication Analysis

Top Keywords

ultralow-frequency ultranarrow-bandwidth
8
ultranarrow-bandwidth coherent
8
coherent terahertz
8
nondestructive testing
8
mortar material
8
thz
8
thz imaging
8
imaging system
8
dynamic range
8
range thz
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!