Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionhisv6ke2781bpqfjjiu3f8ge5jr6j212): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Metamaterials have shown great potential for modulation on the amplitude, phase and polarization of the terahertz wave. Here vacancies were introduced into the metamaterial arrays to tune the mutual interaction between the constituent resonators, which could heavily affect the electromagnetic response of the whole metamaterial arrays. We show that the introduced vacancies in the metamaterial arrays can effectively affect the resonance mode of the metamaterial arrays. Based upon the vacancy mediated coupling, a silicon-metal hybrid metamaterial arrays were designed to achieve active modulation of propagating terahertz waves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.449692 | DOI Listing |
Sci Rep
March 2025
Center for Terahertz Waves and Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
Terahertz spectroscopy has drawn great interest for the detection and characterization of biological matter, but its limited sensitivity to biomolecules with weak changes in dielectric properties with varying concentration has hinders potential bio-sensing applications. Here, a novel terahertz sensor was developed for enhancing the ability to detect biomolecules based on two electromagnetically induced transparency (EIT) metamaterials coupled with gold nanoparticles (AuNPs) integrated with biomolecules. The electrostatic interaction between AuNPs and positively charged biomolecules generates localized field enhancement at the biomolecule-metamaterial interface, resulting in a threefold increase in sensitivity for positively charged histidine that exhibit weak dielectric property changes with varying concentration.
View Article and Find Full Text PDFNano Lett
March 2025
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
Plasmonic nanohelix arrays, exhibiting strong circular dichroism, are among the most promising optical chiral metamaterials. However, achieving chiral plasmonic effects in the visible range remains challenging with current manufacturing techniques, as it requires structures small enough to resonate at visible wavelengths. Herein, we propose a novel strategy for constructing nanohelix arrays through patch-enthalpy-driven self-confined self-assembly of Janus nanoparticles.
View Article and Find Full Text PDFFlexible substrates for sensing provide adaptable, lightweight, and highly sensitive platforms for detecting different substances. The flexibility of these substrates allows for seamless integration with complex shapes and dynamic surfaces, enabling monitoring in challenging conditions using methods such as surface-enhanced Raman spectroscopy (SERS). Here we outline a flexible metamaterial array sensor formed from plasmonic silver-coated nanoimprinted piezoelectric polyvinylidene fluoride film.
View Article and Find Full Text PDFMed Phys
March 2025
Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, USA.
Background: Magnetic resonance imaging (MRI) is a non-invasive technique that produces high-resolution images with excellent soft-tissue contrast, crucial for diagnosing various medical conditions. A key factor in MRI quality is the signal-to-noise ratio (SNR), which directly affects image clarity. To enhance SNR, passive inserts like high-permittivity dielectric pads or metamaterials are used between the tissue and coil.
View Article and Find Full Text PDFCommun Eng
March 2025
School of Electrical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel.
The rapid growth in drone air traffic calls for enhanced radar surveillance systems to ensure reliable detection in challenging conditions. Increasing radar scattering cross-section can greatly improve detection reliability in civilian applications. Here, we introduce a concept of evolutionarily designed metamaterials in the form of multilayer stacks of arrays, featuring strongly coupled electric and magnetic resonators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!