Nonlinear metamaterials show potential for realizing flat nonlinear optical devices but are generally lacking in terms of achievable conversion efficiencies. Recent work has focused on enhancing nonlinear processes by utilizing high quality factor resonances, such as collective responses known as surface lattice resonances (SLRs) taking place in periodic metal nanoparticle arrays. Here, we investigate how the dispersive nature of SLRs affects the nonlinear responses of SLR-supporting metasurfaces. Particularly, we measure second-harmonic generation from aluminum nanoparticle arrays and demonstrate that by tilting the sample along two orthogonal directions, the sample can be made multiply-resonant for several pump and second-harmonic signal wavelength combinations. Characterized metasurfaces are estimated to exhibit a second-order susceptibility value of 0.40 pm/V, demonstrating aluminum as a potential material for nonlinear metasurfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.449198DOI Listing

Publication Analysis

Top Keywords

second-harmonic generation
8
surface lattice
8
lattice resonances
8
nanoparticle arrays
8
nonlinear
5
multiply-resonant second-harmonic
4
generation surface
4
resonances aluminum
4
metasurfaces
4
aluminum metasurfaces
4

Similar Publications

Stacking Engineering toward Giant Second Harmonic Generation in Twisted Graphene Superstructures.

J Am Chem Soc

December 2024

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

The nonlinear optical response in graphene is finding increasing applications in nanophotonic devices. The activation and enhancement of second harmonic generation (SHG) in graphene, which is generally forbidden in monolayer and AB-stacked bilayer graphene due to their centrosymmetry, is of urgent need for nanophotonic applications. Here, we present a comprehensive study of SHG performance of twisted multilayer graphene structures based on stacking engineering.

View Article and Find Full Text PDF

Advances in Imaging of Traumatic Nerve Injuries.

J Am Acad Orthop Surg

December 2024

From the Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT (Graesser), the Washington University School of Medicine in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, MO (Parsons), and the Department of Orthopaedic Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO (Olafsen, Dy, and Brogan).

Traumatic peripheral nerve injuries represent a spectrum of conditions and remain challenging to diagnose and prognosticate. High-resolution ultrasonography and magnetic resonance neurography have emerged as useful diagnostic modalities in the evaluation of traumatic peripheral nerve and brachial plexus injuries. Ultrasonography is noninvasive, is able to rapidly interrogate large areas and multiple nerves, allows for a dynamic assessment of nerves and their surrounding anatomy, and is cost-effective.

View Article and Find Full Text PDF

Absence of High-Pressure Ground-State Reentrant Ferroelectricity in PbTiO_{3}.

Phys Rev Lett

December 2024

Departments of Physics, Chemistry, and Earth and Environmental Sciences, University of Illinois Chicago, Chicago, Illinois 60607, USA.

We study ferroelectricity in the classic perovskite ferroelectric PbTiO_{3} to high pressures with density functional theory (DFT) and experimental diamond-anvil techniques. We use second harmonic generation spectroscopy to detect lack of inversion symmetry. Consistent with early understanding and experiments, we find that ferroelectricity disappears at moderate pressures.

View Article and Find Full Text PDF

Skin Effect of Nonlinear Optical Responses in Antiferromagnets.

Phys Rev Lett

December 2024

Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.

Nonlinear optics plays important roles in the research of fundamental physics and the applications of high-performance optoelectronic devices. The bulk nonlinear optical responses arise from the uniform light absorption in noncentrosymmetric crystals, and hence are usually considered to be the collective phenomena of all atoms. Here we show, in contrast to this common expectation, the nonlinear optical responses in antiferromagnets can be selectively accumulated near the surfaces, representing a skin effect.

View Article and Find Full Text PDF

Chiral hybrid organic-inorganic metal halides (HOMHs) hold great promise in broad applications ranging from ferroelectrics, spintronics to nonlinear optics, owing to their broken inversion symmetry and tunable chiroptoelectronic properties. Typically, chiral HOMHs are constructed by chiral organic cations and metal anion polyhedra, with the latter regarded as optoelectronic active units. However, the primary design approaches are largely constrained to regulation of general components within structural formula.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!