AI Article Synopsis

  • The study focuses on designing valley photonic crystals (VPCs) using two-dimensional hexagonal boron nitride (hBN) to support topological edge states in the visible light spectrum.
  • The edge states enable effective spin-dependent unidirectional transmission with impressive performance metrics, including a transmittance of 0.96 and a transmission contrast of 0.99.
  • It also examines how increasing the refractive index improves both transmittance and bandwidth, suggesting promising applications for unidirectional transmission devices in the visible range.

Article Abstract

Here we theoretically design valley photonic crystals (VPCs) based on two-dimensional (2D) hexagonal boron nitride (hBN) materials, which are able to support topological edge states in the visible region. The edge states can achieve spin-dependent unidirectional transmission with a high forward transmittance up to 0.96 and a transmission contrast of 0.99. We further study the effect of refractive index on transmittance and bandwidth, and it is found that with the increase of refractive index, both transmittance and bandwidth increased accordingly. This study opens new possibilities in designing unidirectional transmission devices in the visible region and will find broad applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.439769DOI Listing

Publication Analysis

Top Keywords

unidirectional transmission
12
visible region
12
edge states
12
topological edge
8
hexagonal boron
8
boron nitride
8
valley photonic
8
photonic crystals
8
refractive transmittance
8
transmittance bandwidth
8

Similar Publications

Self-induced optical non-reciprocity.

Light Sci Appl

January 2025

CAS Key Laboratory of Quantum Information & CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China.

Non-reciprocal optical components are indispensable in optical applications, and their realization without any magnetic field has attracted increasing research interest in photonics. Exciting experimental progress has been achieved by either introducing spatial-temporal modulation of the optical medium or combining Kerr-type optical nonlinearity with spatial asymmetry in photonic structures. However, extra driving fields are required for the first approach, while the isolation of noise and the transmission of the signal cannot be simultaneously achieved for the other approach.

View Article and Find Full Text PDF

The observation of spin-dependent transmission of electrons through chiral molecules has led to the discovery of chiral-induced spin selectivity (CISS). The remarkably high efficiency of the spin polarizing effect has recently gained substantial interest due to the high potential for future sustainable hybrid chiral molecule magnetic applications. However, the fundamental mechanisms underlying the chiral-induced phenomena remain to be understood fully.

View Article and Find Full Text PDF

The advent of bionic skin sensors represents a significant leap forward in the realm of wearable health monitoring technologies. Existing bionic skin technologies face several limitations, including complex and expensive manufacturing processes, low wearing comfort, and challenges in achieving comfortable real-time health monitoring. These shortcomings hinder the widespread adoption and practical utility of bionic skin in various applications.

View Article and Find Full Text PDF
Article Synopsis
  • A new polyimide aerogel-based sandwich composite is created for both thermal protection and electromagnetic wave transparency.
  • The composite consists of three layers: a unidirectional fluorinated PI aerogel at the bottom, a nondirectional conventional PI aerogel in the middle, and a nondirectional fluorinated PI aerogel/paraffin phase-change material on top.
  • The innovative design allows for efficient heat management and communication between devices, making it suitable for use in aircraft, spacecraft, radar systems, and satellite communications.
View Article and Find Full Text PDF

Optical mode-controlled topological edge state in waveguide lattice.

Nanophotonics

February 2024

Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China.

Topological edge state (TES) has emerged as a significant research focus in photonics due to its unique property of unidirectional transmission. This feature provides immunity to certain structural disorders or perturbations, greatly improving the robustness of photonic systems and enabling various applications such as optical isolation and topological lasers. Nevertheless, most of current researches focus on the fixed generated TES with no means to control, leaving untapped potential for manipulating the TES through specific methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!