We introduce a class of self-rotating beams whose intensity profile tends to self-rotate and self-bend in the free space propagation. The feature of the self-rotating beams is acceleration in the three-dimensional (3D) space. The acceleration dynamics of the self-rotating beams is controllable. Furthermore, multiple self-rotating beams can be generated by a combined diffractive optical element (DOE) simultaneously. Such a beam can be viewed as evolution of a vortex beam by changing the exponential constant of phase. We have generated this beam successfully in the experiment and observed the expected phenomenon, which is basically consistent with the result of the numerical simulation. Our results may provide new insight into the self-rotating beam and extend potential applications in optical imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.448270DOI Listing

Publication Analysis

Top Keywords

self-rotating beams
16
self-rotating beam
8
free space
8
space propagation
8
self-rotating
6
beam free
4
propagation introduce
4
introduce class
4
class self-rotating
4
beams
4

Similar Publications

In this study, we introduce a method for adjusting the wing angles of windmill beams. After varying the phase parameters, the sector strengths with different wing angles were generated, and they exhibited a self-rotating property in free-space propagation. This phase was obtained by performing an elliptical operation on the stretching vortex phase.

View Article and Find Full Text PDF

Interferenceless coded aperture correlation holography (I-COACH) is one of the simplest incoherent holography techniques. In I-COACH, the light from an object is modulated by a coded mask, and the resulting intensity distribution is recorded. The 3D image of the object is reconstructed by processing the object intensity distribution with the pre-recorded 3D point spread intensity distributions.

View Article and Find Full Text PDF

In this study, a modified interfering vortex phase mask (MIVPM) is proposed to generate a new type of self-rotating beam. The MIVPM is based on a conventional and stretched vortex phase for generating a self-rotating beam that rotates continuously with increasing propagation distances. A combined phase mask can produce multi-rotating array beams with controllable sub-region number.

View Article and Find Full Text PDF

In this study, we demonstrate the self-healing of self-rotating beams with asymmetric intensity profiles. The proposed self-rotating beam exhibits an asymmetric intensity profile and self-healing properties in free-space propagation. In addition, the rotation direction and beam intensity profile of the self-rotating beam can be adjusted using the parameters a and b in the phase function.

View Article and Find Full Text PDF

We propose an approach against the turbulence-induced degradation by using laser beam with self-rotating wavefront. Such laser beam, generated by the coherent combination of vortex beams with different helical charges and central angular frequencies, can introduce coupling of its wavefront in spatial and temporal domain, that is, periodic wavefront rotation. When the wavefront rotation is faster than the airflow, the laser beam can travel through the inhomogeneity and anisotropy of air in the azimuthal direction within the time interval of airflow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!