Fluorescence microscopy plays an irreplaceable role in biomedicine. However, limited depth of field (DoF) of fluorescence microscopy is always an obstacle of image quality, especially when the sample is with an uneven surface or distributed in different depths. In this manuscript, we combine deep learning with Fresnel incoherent correlation holography to describe a method to obtain significant large DoF fluorescence microscopy. Firstly, the hologram is restored by the Auto-ASP method from out-of-focus to in-focus in double-spherical wave Fresnel incoherent correlation holography. Then, we use a generative adversarial network to eliminate the artifacts introduced by Auto-ASP and output the high-quality image as a result. We use fluorescent beads, USAF target and mouse brain as samples to demonstrate the large DoF of more than 400µm, which is 13 times better than that of traditional wide-field microscopy. Moreover, our method is with a simple structure, which can be easily combined with many existing fluorescence microscopic imaging technology.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.451409DOI Listing

Publication Analysis

Top Keywords

fluorescence microscopy
16
fresnel incoherent
12
incoherent correlation
12
correlation holography
12
deep learning
8
dof fluorescence
8
large dof
8
fluorescence
5
microscopy
5
large depth-of-field
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!