Electrically generated spin accumulation due to the spin Hall effect of Pt/GaAs is detected by circular polarized photoconductivity (CPPC), which shows electron spins with different polarizations accumulated around opposite sample boundaries. An optical absorption model incorporating spin is used to explain these features. The detailed analysis of the observed degree of circular polarization of the photocurrent strongly suggests that Pt and GaAs have the same spin accumulation length in the Pt/GaAs heterostructure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.448300 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.
Precisely controlling quantum states is relevant in next-generation quantum computing, encryption, and sensing. Chiral organic chromophores host unique light-matter interactions, which allow them to manipulate the quantized circular polarization of photons. Axially chiral organic scaffolds, such as helicenes or twisted acenes, are powerful motifs in chiral light manipulation.
View Article and Find Full Text PDFAchiral metasurfaces with near-field optical chirality have attracted great attention in molecular sensing and chiral emission control. Here, the circular dichroism (CD) response of an achiral metasurface induced by spatially selective coupling with polymethyl methacrylate (PMMA) molecules is demonstrated. A designed achiral metasurface with a V-shaped resonator exhibits large optical chirality with a strongly dissymmetric distribution under circular polarization.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Type-II multiferroicity from non-collinear spin order is recently explored in the van der Waals material NiI. Despite the importance for improper ferroelectricity, the microscopic mechanism of the helimagnetic order remains poorly understood. Here, the magneto-structural phases of NiI are investigated using resonant magnetic X-ray scattering (RXS) and X-ray diffraction.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
Interlayer excitons (IXs) in the heterostructure of monolayer transition metal dichalcogenides (TMDs) are considered as a promising platform to study fundamental exciton physics and for potential applications of next generation optoelectronic devices. The IXs trapped in the moiré potential in a twisted monolayer TMD heterostructure such as MoSe/WSe form zero-dimensional (0D) moiré excitons. Introducing an atomically thin insulating layer between TMD monolayers in a twisted heterostructure would modulate the moiré potential landscape, thereby tuning 0D IXs into 2D IXs.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62512, Egypt.
This paper presents a novel investigation of a magnetic sensor that employs Fano/Tamm resonance within the photonic band gap of a one-dimensional crystal structure. The design incorporates a thin layer of gold (Au) alongside a periodic arrangement of Tantalum pentoxide ([Formula: see text]) and Cesium iodide ([Formula: see text]) in the configuration [Formula: see text]. We utilized the transfer matrix method in conjunction with the Drude model to analyze the formation of Fano/Tamm states and the permittivity of the metallic layer, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!