We present a simple, continuous, cavity-enhanced optical absorption measurement technique based on high-bandwidth Pound-Drever-Hall (PDH) sideband locking. The technique provides a resonant amplitude quadrature readout that can be mapped onto the cavity's internal loss rate and is naturally compatible with weak probe beams. With a proof-of-concept 5-cm-long Fabry-Perot cavity, we measure an absorption sensitivity ∼10cm/Hz from 30 kHz to 1 MHz, and a minimum value of 6.6×10cm/Hz at 100 kHz, with 38 µW collected from the cavity's circulating power.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.443109 | DOI Listing |
Science
December 2024
Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
Collective phenomena arise from interactions within complex systems, leading to behaviors absent in individual components. Observing quantum collective phenomena with macroscopic mechanical oscillators has been impeded by the stringent requirement that oscillators be identical. We demonstrate the quantum regime for collective motion of = 6 mechanical oscillators, a hexamer, in a superconducting circuit optomechanical platform.
View Article and Find Full Text PDFNanophotonics
November 2024
School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
Structural colors, resulting from the interaction of light with nanostructured materials rather than pigments, present a promising avenue for diverse applications ranging from ink-free printing to optical anti-counterfeiting. Achieving structural colors with high purity and brightness over large areas and at low costs is beneficial for many practical applications, but still remains a challenge for current designs. Here, we introduce a novel approach to realizing large-scale structural colors in layered thin film structures that are characterized by both high brightness and purity.
View Article and Find Full Text PDFWe propose a scheme for cooling a mechanical resonator to its ground state in a quadratic optomechanical system, assisted by an atomic ensemble in the unresolved sideband regime. The system features an auxiliary cavity directly coupled to an optical cavity, with a portion of the optical cavity's output field being fed back through an asymmetric beam splitter. Utilizing quantum Langevin and master equations, we derive the optical fluctuation spectrum, the cooling rate, and the mean phonon number of the mechanical resonator.
View Article and Find Full Text PDFThis article presents a flexibly tunable microwave photonic filter (MPF) with a dual ultra-narrow passband based on a dual-wavelength and narrow linewidth Brillouin laser. The dual passband of the filter not only exhibits ultra-high frequency selectivity but also allows for flexible and simultaneous tuning of the center frequency and interval of the passbands. In the proposed scheme, the core optical processor of the MPF consists of a dual-ring Brillouin laser resonator, which is composed of a 100-meter main fiber ring cascaded with a 10-meter secondary fiber ring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!