The electric double-layer capacitor (EDLC) has attracted attention by using activated carbon (AC) as an active electrode material with a high power density and high cost-efficiency in industrial applications. The EDLC has been actively developed over the past decade to improve the power density and capacitance. Extensive studies on EDLCs have been conducted to investigate the relation of EDLC capacitance to the physical properties of AC, such as the specific surface area, pore type and size, and electrical conductivity. In this study, EDLC was fabricated with AC, and its capacitance was evaluated with the physical properties of AC. The AC was prepared using petroleum-based pitch synthesized using pyrolysis fuel oil (PFO) with polyethylene terephthalate (PET). The AC based on PFO and PET (PPAC) exhibited high specific surface area and low micropore fraction compared to the PFO-based AC without PET addition (PAC). Furthermore, the reduction of the EDLC capacitance of PPAC was smaller than that of PAC, as the scan rate was increased from 5 to 100 mV s-1. It was determined that the minor reduction of capacitance with an increase in the scan rate resulted from the development of 4 nm-sized mesopores in PPAC. In addition, a comprehensive correlation of EDLC capacitance with various physical properties of ACs, such as specific surface area, pore characteristics, and electrical conductivity, was established. Finally, the optimal properties of AC were thereupon derived to improve the EDLC capacitance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875226 | PMC |
http://dx.doi.org/10.3390/molecules27041454 | DOI Listing |
Small
January 2025
Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
Materials (Basel)
December 2024
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
This study presents the synthesis of a transparent, flexible gel polymer electrolyte (GPE) based on the protic ionic liquid BMImHSO and on polyvinyl alcohol (PVA) through solution casting and electrochemical evaluation in a 2.5 V symmetrical C/C electrical double-layer solid-state capacitor (EDLC). The freestanding GPE film exhibits high thermal stability (>300 °C), wide electrochemical windows (>2.
View Article and Find Full Text PDFMolecules
November 2024
Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan.
In this study, a three-dimensional (3D) interconnected porous Ni/SiC skeleton (3D Ni/SiC) was synthesized by binder-free hydrogen bubble template-assisted electrodeposition in an electrolyte containing Ni ions and SiC nanopowders. This 3D Ni/SiC skeleton served as a substrate for directly synthesizing nickel-cobalt layered double hydroxide (LDH) nanosheets via electrodeposition, allowing the formation of a nickel-cobalt LDH nanosheet-decorated 3D Ni/SiC skeleton (NiCo@3D Ni/SiC). The multiscale hierarchical structure of NiCo@3D Ni/SiC was attributed to the synergistic interaction between the pseudocapacitor (3D Ni skeleton and Ni-Co LDH) and electrochemical double-layer capacitor (SiC nanopowders).
View Article and Find Full Text PDFWaste Manag
January 2025
US Pakistan Center for Advanced Studies in Energy, National University of Sciences and Technology, Islamabad 44000, Pakistan.
The procedure for disposing of textile waste sludge requires sustainable solutions due to numerous environmental issues associated with its disposal. The majority of textile manufacturers incinerate the waste sludge to meet their heating demands, which is harmful to the environment. It can also be used in soil amendment, biodegradable products, construction material and water treatment process as absorbent to remove the heavy metals etc.
View Article and Find Full Text PDFRSC Adv
November 2024
Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal 576104 Karnataka India +91 98454 97546.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!