Olives ( L.) are a significant part of the agroindustry in China. Olive leaves, the most abundant by-products of the olive and olive oil industry, contain bioactive compounds that are beneficial to human health. The purpose of this study was to evaluate the phytochemical profiles and antioxidant capacities of olive leaves from 32 cultivars grown in China. A total of 32 phytochemical compounds were identified using high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry, including 17 flavonoids, five iridoids, two hydroxycinnamic acids, six triterpenic acids, one simple phenol, and one coumarin. Specifically, olive leaves were found to be excellent sources of flavonoids (4.92-18.29 mg/g dw), iridoids (5.75-33.73 mg/g dw), and triterpenic acids (15.72-35.75 mg/g dw), and considerable variations in phytochemical content were detected among the different cultivars. All tested cultivars were classified into three categories according to their oil contents for further comparative phytochemicals assessment. Principal component analysis indicated that the investigated olive cultivars could be distinguished based upon their phytochemical profiles and antioxidant capacities. The olive leaves obtained from the low-oil-content (<16%) cultivars exhibited higher levels of glycosylated flavonoids and iridoids, while those obtained from high-oil-content (>20%) cultivars contained mainly triterpenic acids in their compositions. Correspondingly, the low-oil-content cultivars (OL3, Frantoio selection and OL14, Huaou 5) exhibited the highest ABTS antioxidant activities (758.01 ± 16.54 and 710.64 ± 14.58 mg TE/g dw, respectively), and OL9 ( subsp. Cuspidata isolate Yunnan) and OL3 exhibited the highest ferric reducing/antioxidant power assay values (1228.29 ± 23.95 mg TE/g dw and 1099.99 ± 14.30 mg TE/g dw, respectively). The results from this study may be beneficial to the comprehensive evaluation and utilization of bioactive compounds in olive leaves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878581PMC
http://dx.doi.org/10.3390/molecules27041292DOI Listing

Publication Analysis

Top Keywords

olive leaves
24
phytochemical profiles
12
profiles antioxidant
12
triterpenic acids
12
olive
9
leaves cultivars
8
cultivars grown
8
grown china
8
bioactive compounds
8
antioxidant capacities
8

Similar Publications

Olive pomace is a valuable source of bioactive compounds. Olive pomace is not fully utilized, so the goal was to create edible disposable tableware from the by-products of the olive pressing process. For this purpose, a mixture was created from olive pomace, teff flour, sorghum, and lecithin (75.

View Article and Find Full Text PDF

Can a Light Detection and Ranging (LiDAR) and Multispectral Sensor Discriminate Canopy Structure Changes Due to Pruning in Olive Growing? A Field Experimentation.

Sensors (Basel)

December 2024

Department of Agricultural, Alimentary, Environmental and Forestry Sciences, Biosystem Engineering Division-DAGRI, University of Florence, Piazzale delle Cascine 15, 50144 Florence, Italy.

The present research aimed to evaluate whether two sensors, optical and laser, could highlight the change in olive trees' canopy structure due to pruning. Therefore, two proximal sensors were mounted on a ground vehicle (Kubota B2420 tractor): a multispectral sensor (OptRx ACS 430 AgLeader) and a 2D LiDAR sensor (Sick TIM 561). The multispectral sensor was used to evaluate the potential effect of biomass variability before pruning on sensor response.

View Article and Find Full Text PDF

Studies on selenium (Se) and silicon (Si) foliar biostimulation of different plants have been shown to affect concentrations of phenolic compounds. However, their effects on olive ( L.) primary and secondary metabolites have not been fully investigated.

View Article and Find Full Text PDF

To fight counterfeits, and to protect the consumer, the interest in certifying the origin of agricultural goods has been growing in recent years. In this context and to increase the accuracy of zoning models, multiple analytical techniques must be combined via a multivariate approach. During the sampling campaign, leaves and fruits (olives or drupes) were collected from multiple orchards and farms.

View Article and Find Full Text PDF

Olive leaves are agro-industrial waste that pose an environmental management problem. However, they contain polyphenolic compounds with important bioactive properties beneficial to human. This study aimed to evaluate the effectiveness of two extraction technologies (pressurized liquid extraction and ultrasound-assisted extraction) combined with green solvents (pure water, 15% ethanol, and 15% glycerol) at 50 °C and 70 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!