Discovering new and effective drugs for the treatment of Alzheimer's disease (AD) is a major clinical challenge. This study focuses on chemical modulation of the gut microbiome in an established murine AD model. We used the 16S rDNA sequencing technique to investigate the effect of xanthohumol (Xn) on the diversity of intestinal microflora in 2-month- and 6-month-old APP/PS1 mice, respectively. APP/PS1 and wild-type mice were treated by gavage with corn oil with or without Xn every other day for 90 days. Prior to and following treatment, animals were tested for spatial learning, cognitive and memory function. We found Xn reduced cognitive dysfunction in APP/PS1 mice and significantly regulated the composition and abundance of gut microbiota both in prevention experiments (with younger mice) and therapeutic experiments (with older mice). Differential microflora were significantly enriched in APP/PS1 mice treated with Xn. and may be the specific microflora modulated by Xn. The penicillin and cephalosporin biosynthesis pathway and the atrazine degradation pathway may be the principal modulation pathways. Taken together, oral treatment with Xn may have a neuroprotective role by regulating the composition of intestinal microflora, a result that contributes to the scientific basis for a novel prophylactic and therapeutic approach to AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880053 | PMC |
http://dx.doi.org/10.3390/molecules27041281 | DOI Listing |
J Alzheimers Dis
January 2025
Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China.
Background: Our previous studies have established that the broad-spectrum anti-epileptic drug lamotrigine (LTG) confers protection against cognitive impairments, synapse and nerve cell damage, as well as characteristic neuropathologies in APP/PS1 mice, a mouse model of Alzheimer's disease (AD). However, the precise molecular mechanisms responsible for this protective effect induced by LTG remain largely elusive.
Objective: In this study, we aimed to investigate the mechanisms underlying the beneficial effects of LTG against AD.
Apoptosis
January 2025
Department of Laboratory Animal Science, China Medical University, No. 77, Puhe Road, Shenbei New District, Shenyang, Liaoning Province, 110122, China.
This study investigates silibinin's capacity to mitigate Alzheimer's disease (AD) pathologies with a particular emphasis on its effects on apoptosis and synaptic dysfunction in AD models. Employing APP/PS1 transgenic mice and SH-SY5Y neuroblastoma cell lines, our research assessed the efficacy of silibinin in reducing amyloid-beta (Aβ) deposition, neuroinflammation, and neuronal apoptosis. Our results demonstrate that silibinin significantly decreases Aβ accumulation and neuroinflammation and robustly inhibits apoptosis in neuronal cells.
View Article and Find Full Text PDFChemistry
January 2025
Shanghai Institute of Materia Medica Chinese Academy of Sciences, State Key Laboratory of Drug Research, CHINA.
The fluorescent imaging of pathologically accumulated β-amyloid (Aβ) proteins is of significant importance to the diagnosis of Alzheimer's disease (AD). In the paper, we prepared two new NIR probes, NIR-1 and NIR-2, through hydrophilic modification of introducing water-soluble bioactive groups such as polyethylene glycol (PEG) and morpholine to tune in vivo pharmacokinetics for specific detection of soluble and insoluble Aβ species. The in vitro assessments confirm that both NIR-1 and NIR-2 display strong near-infrared (NIR) fluorescence (FL) enhancement upon association with Aβ42 monomers, oligomers or aggregates (λem > 670 nm) and show high sensitive, rapid and selective response towards Aβ42 species.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Aerobic exercise (AE) has been shown to offer significant benefits for Alzheimer's disease (AD), potentially influencing the gut microbiota. However, the impact of changes in intestinal flora in early Alzheimer's disease induced by aerobic exercise on metabolic pathways and metabolites is not well understood. In this study, 3-month-old APP/PS1 and C57BL/6 mice were divided into two groups each: a control group (ADC for APP/PS1 and WTC for C57BL/6) and an aerobic exercise group (ADE for APP/PS1 and WTE for C57BL/6).
View Article and Find Full Text PDFAlzheimer's disease (AD) is a form of dementia in which memory and cognitive decline is thought to arise from underlying neurodegeneration. These cognitive impairments, however, are transient when they first appear and can fluctuate across disease progression. Here, we investigate the neural mechanisms underlying fluctuations of performance in amnestic mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!